
MapReduce

Tushar B. Kute,
http://tusharkute.com

What is MapReduce?

• MapReduce is a framework using which we
can write applications to process huge
amounts of data, in parallel, on large clusters
of commodity hardware in a reliable manner.

• MapReduce is a processing technique and a
program model for distributed computing
based on java.

• The MapReduce algorithm contains two
important tasks, namely Map and Reduce.

Map and Reduce

• Map takes a set of data and converts it into
another set of data, where individual elements
are broken down into tuples (key/value pairs).

• Secondly, reduce task, which takes the output
from a map as an input and combines those
data tuples into a smaller set of tuples. As the
sequence of the name MapReduce implies, the
reduce task is always performed after the map
job.

Map and Reduce

• The major advantage of MapReduce is that it is easy to
scale data processing over multiple computing nodes.

• Under the MapReduce model, the data processing
primitives are called mappers and reducers.

• Decomposing a data processing application into mappers
and reducers is sometimes nontrivial. But, once we write
an application in the MapReduce form, scaling the
application to run over hundreds, thousands, or even tens
of thousands of machines in a cluster is merely a
configuration change.

• This simple scalability is what has attracted many
programmers to use the MapReduce model.

The Algorithm

• MapReduce program executes in three stages, namely map
stage, shuffle stage, and reduce stage.

• Map stage: The map or mapper’s job is to process the input
data. Generally the input data is in the form of file or directory
and is stored in the Hadoop file system (HDFS). The input file is
passed to the mapper function line by line. The mapper
processes the data and creates several small chunks of data.

• Reduce stage: This stage is the combination of the Shuffle
stage and the Reduce stage. The Reducer’s job is to process
the data that comes from the mapper. After processing, it
produces a new set of output, which will be stored in the
HDFS.

The MapReduce

Inserting Data into HDFS

• The MapReduce framework operates on <key, value>
pairs, that is, the framework views the input to the job as
a set of <key, value> pairs and produces a set of <key,
value> pairs as the output of the job, conceivably of
different types.

• The key and the value classes should be in serialized
manner by the framework and hence, need to implement
the Writable interface. Additionally, the key classes have
to implement the Writable-Comparable interface to
facilitate sorting by the framework.

• Input and Output types of a MapReduce job: (Input)
<k1,v1> -> map -> <k2, v2>-> reduce -> <k3, v3> (Output).

Shutting Down the HDFS

Terminology

• PayLoad - Applications implement the Map
and the Reduce functions, and form the core
of the job.

• Mapper - Mapper maps the input key/value
pairs to a set of intermediate key/value pair.

• NamedNode - Node that manages the
Hadoop Distributed File System (HDFS).

• DataNode - Node where data is presented in
advance before any processing takes place.

Terminology

• MasterNode - Node where JobTracker runs and which accepts job
requests from clients.

• SlaveNode - Node where Map and Reduce program runs.
• JobTracker - Schedules jobs and tracks the assign jobs to Task

tracker.
• Task Tracker - Tracks the task and reports status to JobTracker.
• Job - A program is an execution of a Mapper and Reducer across a

dataset.
• Task - An execution of a Mapper or a Reducer on a slice of data.
• Task Attempt - A particular instance of an attempt to execute a

task on a SlaveNode.

Example:

Example:

• ProcessUnits.java

Compilation and Execution

• Let us assume we are in the home
directory of a Hadoop user (e.g.
/home/hadoop).

• Follow the steps given below to compile
and execute the above program.

• Step 1
– The following command is to create a

directory to store the compiled java classes.
– $ mkdir units

Compilation and Execution

• Step 2
• Download Hadoop-core-1.2.1.jar, which is used to compile

and execute the MapReduce program. Visit the following link

http://mvnrepository.com/artifact/org.apache.hadoop/hadoop
-core/1.2.1
To download the jar. Let us assume the downloaded folder
is /home/hadoop/.

• Step 3
• The following commands are used for compiling the

ProcessUnits.java program and creating a jar for the program.
• $ javac -classpath hadoop-core-1.2.1.jar

units/ProcessUnits.java
• $ jar -cvf units.jar -C units/ .

http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-core/1.2.1
http://mvnrepository.com/artifact/org.apache.hadoop/hadoop-core/1.2.1

Compilation and Execution

• Step 4
– The following command is used to create an input directory in HDFS.
– $HADOOP_HOME/bin/hadoop fs -mkdir input_dir

• Step 5
– The following command is used to copy the input file named

sample.txt in the input directory of HDFS.
– $HADOOP_HOME/bin/hadoop fs -put /home/hadoop/sample.txt

input_dir/

• Step 6
– The following command is used to verify the files in the input

directory.
– $HADOOP_HOME/bin/hadoop fs -ls input_dir/

Compilation and Execution

• Step 7
– The following command is used to run the

Eleunit_max application by taking the input
files from the input directory.

– $HADOOP_HOME/bin/hadoop jar units.jar
ProcessUnits input_dir/ output_dir/

– Wait for a while until the file is executed. After
execution, as shown below, the output will
contain the number of input splits, the number
of Map tasks, the number of reducer tasks, etc.

Compilation and Execution

• Step 8
– The following command is used to verify the resultant files in the

output folder.
– $HADOOP_HOME/bin/hadoop fs -ls output_dir/

• Step 9
– The following command is used to see the output in Part-00000 file.

This file is generated by HDFS.
– $HADOOP_HOME/bin/hadoop fs -cat output_dir/part-00000

• Below is the output generated by the MapReduce program.

1981 34

1984 40

1985 45

Compilation and Execution

• Step 10
• The following command is used to copy

the output folder from HDFS to the local
file system for analyzing.
– $HADOOP_HOME/bin/hadoop fs -cat

output_dir/part-00000/bin/hadoop dfs -get
output_dir /home/hadoop

Commands

• All Hadoop commands are invoked by the
$HADOOP_HOME/bin/hadoop command.
Running the Hadoop script without any
arguments prints the description for all
commands.

• Usage:
– hadoop [--config confdir] COMMAND

Commands

• namenode -format
– Formats the DFS filesystem.

• secondarynamenode
– Runs the DFS secondary namenode.

• namenode
– Runs the DFS namenode.

Commands

• datanode
– Runs a DFS datanode.

• dfsadmin
– Runs a DFS admin client.

• mradmin
– Runs a Map-Reduce admin client.

• fsck
– Runs a DFS filesystem checking utility.

• fs
– Runs a generic filesystem user client.

• balancer
– Runs a cluster balancing utility.

Commands

• jobtracker
– Runs the MapReduce job Tracker node.

• tasktracker
– Runs a MapReduce task Tracker node.

• job
– Manipulates the MapReduce jobs.

• queue
– Gets information regarding JobQueues.

• version
– Prints the version.

• jar <jar>
– Runs a jar file.

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 4.2.7.2, can be used freely as per GNU General Public License

Blogs
http://digitallocha.blogspot.in
http://kyamputar.blogspot.in

Web Resources
http://mitu.co.in

http://tusharkute.com

http://digitallocha.blogspot.in/

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

