
Drag and Drop

Tushar B. Kute,
http://tusharkute.com

Drag and Drop

• Android drag/drop framework allows your users to
move data from one View to another View in the
current layout using a graphical drag and drop
gesture. As of API 11 drag and drop of view onto
other views or view groups is supported.

• The framework includes following three important
components to support drag & drop functionality −
– Drag event class.
– Drag listeners.
– Helper methods and classes.

Drag and Drop Process

• There are basically four steps or states in the drag and drop
process −

• Started − This event occurs when you start dragging an item in
a layout, your application calls startDrag() method to tell the
system to start a drag. The arguments inside startDrag()
method provide the data to be dragged, metadata for this data,
and a callback for drawing the drag shadow.

• Continuing − The user continues the drag. System sends
ACTION_DRAG_ENTERED action followed by
ACTION_DRAG_LOCATION action to the registered drag event
listener for the View where dragging point enters. The listener
may choose to alter its View object's appearance in response to
the event or can react by highlighting its View.

Drag and Drop Process

• Dropped − The user releases the dragged item
within the bounding box of a View. The system
sends the View object's listener a drag event
with action type ACTION_DROP.

• Ended − Just after the action type
ACTION_DROP, the system sends out a drag
event with action type ACTION_DRAG_ENDED
to indicate that the drag operation is over.

The DragEvent class

• The DragEvent represents an event that is sent
out by the system at various times during a drag
and drop operation.

• This class provides few Constants and important
methods which we use during Drag/Drop
process.

The DragEvent constants

• ACTION_DRAG_STARTED
– Signals the start of a drag and drop operation.

• ACTION_DRAG_ENTERED
– Signals to a View that the drag point has entered the bounding box of the View.

• ACTION_DRAG_LOCATION
– Sent to a View after ACTION_DRAG_ENTERED if the drag shadow is still within

the View object's bounding box.

• ACTION_DRAG_EXITED
– Signals that the user has moved the drag shadow outside the bounding box of

the View.

• ACTION_DROP
– Signals to a View that the user has released the drag shadow, and the drag point

is within the bounding box of the View.

• ACTION_DRAG_ENDED
– Signals to a View that the drag and drop operation has concluded.

The DragEvent methods

• int getAction()
– Inspect the action value of this event..

• ClipData getClipData()
– Returns the ClipData object sent to the system as part of the call to startDrag().

• ClipDescription getClipDescription()
– Returns the ClipDescription object contained in the ClipData.

• boolean getResult()
– Returns an indication of the result of the drag and drop operation.

• float getX()
– Gets the X coordinate of the drag point.

• float getY()
– Gets the Y coordinate of the drag point.

• String toString()
– Returns a string representation of this DragEvent object.

Listening DragEvent

• If you want any of your views within a Layout should respond
Drag event then your view either implements
View.OnDragListener or setup onDragEvent(DragEvent)
callback method.

• When the system calls the method or listener, it passes to them
a DragEvent object explained above. You can have both a
listener and a callback method for View object. If this occurs,
the system first calls the listener and then defined callback as
long as listener returns true.

• The combination of the onDragEvent(DragEvent) method and
View.OnDragListener is analogous to the combination of the
onTouchEvent() and View.OnTouchListener used with touch
events in old versions of Android.

Starting DragEvent

• You start with creating a ClipData and ClipData.Item for
the data being moved. As part of the ClipData object,
supply metadata that is stored in a ClipDescription object
within the ClipData. For a drag and drop operation that
does not represent data movement, you may want to use
null instead of an actual object.

• Next either you can extend extend
View.DragShadowBuilder to create a drag shadow for
dragging the view or simply you can use
View.DragShadowBuilder(View) to create a default drag
shadow that's the same size as the View argument passed
to it, with the touch point centered in the drag shadow.

• DragDrop.java

Example

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 4.2.8.2, can be used freely as per GNU General Public License

Blogs
http://digitallocha.blogspot.in
http://kyamputar.blogspot.in

Web Resources
http://mitu.co.in

http://tusharkute.com

http://digitallocha.blogspot.in/

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

