Installation & Data Preprocessing

Python 3 | Anaconda | Datasets

Contents

- Installing Python 3
- Installing Anaconda
- Dataset acquisition
- Importing the Libraries
- Importing the Dataset
- Missing Data
- Categorical Data
- Splitting: Training & Testing
- Feature Scaling

Installing Python3

- Before installing any of the packages, it is mandatory to update your OS with recent patches
- The supported files, libraries, security patches need to updated at least once in a week
- BEGIN in Terminal:
 - sudo apt-get update
 - sudo apt-get install python3.5
- The first command as it says, updates your system repositories
- The second one installs python 3.5, to check type
 - python3

Installing Anaconda

- Traverse into directory where Anaconda's Shell extension file is stored using terminal
 - cd /Package/
- Install it using bash
 - bash Anaconda3-4.3.1-Linux-x86_64.sh
- Installing is not sufficient, we need to mention it the Python version that they must use
 - conda install python=3.5
- To ensure it is running in same env., follow this
 - python3.5 #check the header for anaconda

> USING Python IDE

- PyCharm IDE installation
- Shortcuts:
 - Ctrl + Shift + F10
 - Alt + Shift + F10
 - Alt + Shift + X
 - Ctrl + Alt + E
 - Ctrl + `

RUN current Program

RUN only selected file

RUN recently exected only

RUN in Py Console

Open Utility Menu

- Create Project from Start up menu
- Create New Python file

Dataset Acquisition

- Unzip the given Zipped file; named Machine Learning A-Z ds.zip
- In the folder with name Data Pre-processing, you will see your dataset named Data.csv
- Drag and Drop the *Data.csv* on Project directory in PyCharm

Importing Dataset

import

- using this statement we can import packages / libraries inside python
- to import dataset we need special library to perform Dataset import
- Pandas, is the required dataset for same

import pandas

 Using package name entirely increases keystrokes, to save it we give Alias/Name name

import pandas as pd

Now we can use pd, everytime we need to call it

Missing Data

- Predicting the missing values using Averaging / Mean
- Preprocessing from SKlearn can handle such tasks using Imputer

Categorical Data

- Categorizing the Repetative Strings into values
- Values so that they can be given into equations
- Let's convert them to numbers

Categorical Data

DUMMY ENCODING

Country	France	T	Germany Spain	-
France —	\rightarrow	1	0	0
Spain		0	0	1
Germany		0	1	0
Spain		0	0	1
Germany		0	1	0
France —	\rightarrow	1	0	0
Spain		0	0	1
France —	\rightarrow	1	0	0
Germany		0	1	0
France —	\rightarrow	1	0	0

Splitting - Training & Testing

 Machine Learning performance improves with new Co-relations

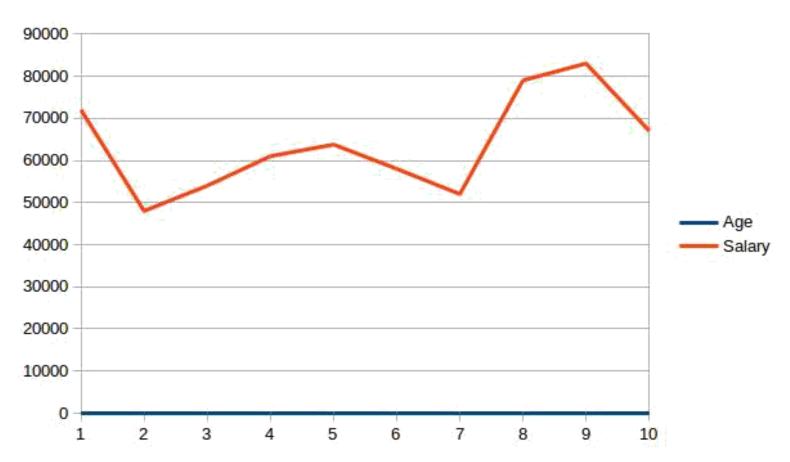
VS

• Eg.

MEMORIZATION

CORELATION

- Varying nature of Data
 - AGE: 27 to 47
 - SALARY: 40K to 80K
- Lose of Scaling
- ML are based on Euclidean distances


Euclidean

juːˈklɪdɪən | adjective

is Two data points is the Sq root of Sum of the squared co-ordinates

• Euclidean Distance Distance b/w P1 & P2 = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Actual Plotting of Values

EUREKA!

- Scale values from -1 to +1 to get both the AXES in same range
- Eliminate Domination

Congratulations! DAY 1 Accomplished!

