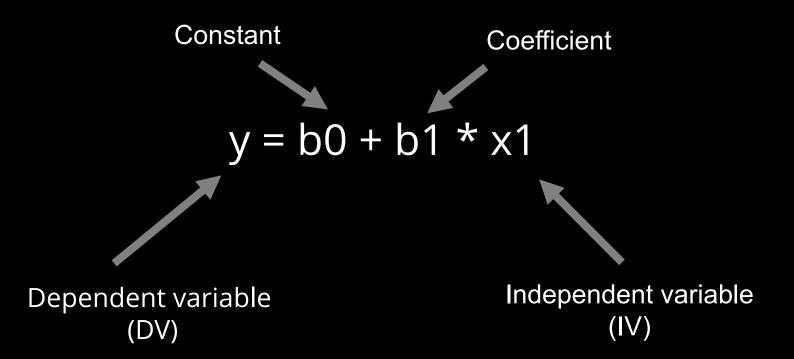
Regression

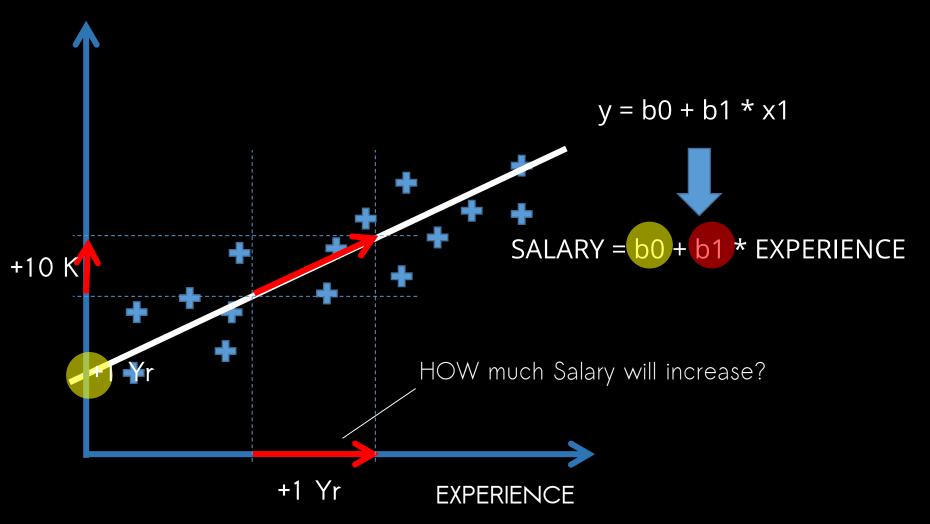
Introduction | Types | Practice

Contents

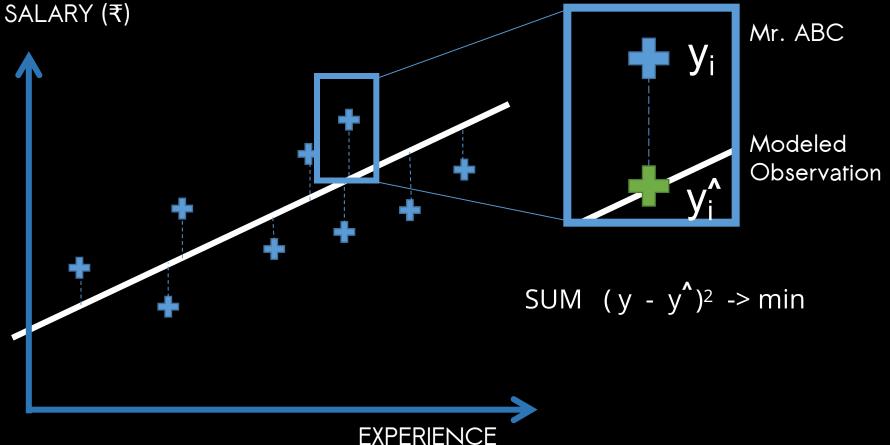

- What is Regression
- Simple Linear Regression
- Multiple Linear Regression
- Polynomial Linear Regression

What is Regression?

 Regression is a statistical measure used in finance, investing and other disciplines that attempts to determine the strength of the relationship between one **dependent** variable (usually denoted by Y) and a series of other changing variables (known as independent variables).


TYPES:

- Simple Linear Regression
- Multi Linear Regression
- Polynomial Linear Regression


SALARY (₹)

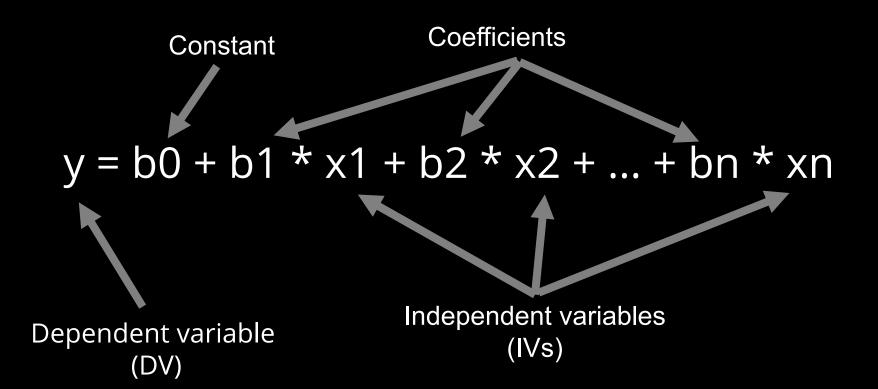
EQUATION PLOTTING

ORDINARY LEAST SQUARES

How SLR finds **Best Fitting Line** from our Data

ANALYZING DATASET

DV


YearsExperi	ence	Salary 🗖	
	1.1	39343	
	1.3	46205	
	1.5	37731	
	2	43525	
	2.2	39891	
	2.9	56642	
	3	60150	
	3.2	54445	
	3.2	64445	
	3.7	57189	
	3.9	63218	
	4	55794	
	4	56957	
	4.1	57081	
	4.5	61111	
	4.9	67938	

IV –

- Prep your Data Preprocessing Template
 - Import Dataset
 - No need for Missing Data
 - Splitting into Training & Testing dataset
 - Keep Feature Scaling but least preffered here

LET's CODE!

- Co-relate <u>Salaries</u> with <u>Experience</u>
- Later carry out prediction
- Verify the Values of prediction
- Prediction on TEST SET

ASSUMPTIONS OF LINEAR REGRESSION

- Linearity
- Homoscedasticity
- Multivariate normality
- Independence of Errors
- Lack of Multicollinearity

DUMMY VARIABLES

			ategorical	
			Variable	
R&D Spend	Administratic	Marketin	State 🗖	Profit
165349.2	136897.8	471784.1	New York	
162597.7	151377.59	443898.5	California	191792.1
153441.51	101145.55	407934.5	Florida	191050.4
144372.41	118671.85	383199.6	New York	182902
142107.34	91391.77	366168.4	Florida	166187.9
131876.9	99814.71	362861.4	New York	156991.1
134615.46	147198.87	127716.8	California	156122.5
130298.13	145530.06	323876.7	Florida	155752.6
120542.52	148718.95	311613.3	New York	152211.8
123334.88	108679.17	304981.6	California	149760
101913.08	110594.11	229161	Florida	146122
100671.96	91790.61	249744.6	California	144259.4

DUMMY VARIABLES

CALIFORNIA

D

1

1

NEW YORK

1

0

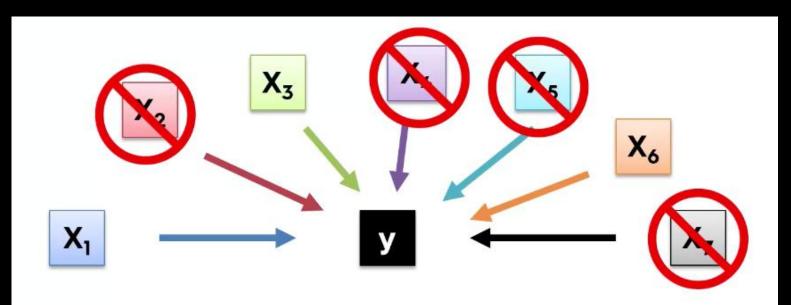
0

0

D Spend 🗖	Administratic	Marketing	State 📮
165349.2	136897.8	471784.1	New York
162597.7	151377.59	443898.5	California
153441.51	101145.55	407934.5	Florida
144372.41	118671.85	383199.6	New York
142107.34	91391.77	366168.4	Flolida
131876.9	99814.71	362861.4	New York
134615.46	147198.87	127716.8	California
130298.13	145530.06	323876.7	Florida
120542.52	148718.95	311613.3	New York
123334.88	108679.17	304981.6	Californa
101913.08	110594.11	229161	Florida
100671.96	91790.61	249744.6	California

y = b0 + b1 * x1 + b2 * x2 + b3 * x3 + b4 * D1

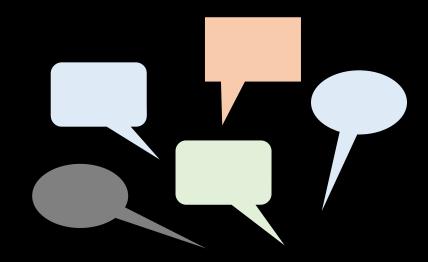
DUMMY VARIABLE TRAP


						D
-	Administratic	Marketin	State 🗖			
349.2	136897.8	471784.1	New York			
597.7	151377.59	443898.5	California		NEW YORK	CALIFORNIA
1.51	101145.55	407934.5	Florida			
2.41	118671.85	38				0
07.34	91391.77	3	D2 =	1 - D1		
376.9	99814.71	3				1
5.46	147198.87	107716.9	Colitornia			·
8.13	145530.0	Mul	ti Linear	Colinear	ty	1
2.52	148718.95	311013.3				1
34.88	108679.17	304981.6	California			_
3.08	110594.11	229161	Florida		0	1
1.96	91790.61	249744.6	California			

y = b0 + b1 * x1 + b2 * x2 + b3 * x3 + b4 * D1 +

Always OMIT one Dummy Variable

STEP BY STEP



Why?

2 REASONS

• GARBAGE IN ARBAGE OUT

• TOO MUCH EXPLANATION LATER

METHODS OF BUILDING A MODEL

- All in
- Backward Elimination
- Forward Selection
- Bidirectional Elimination
- Score Comparison

Stepwise regression

METHODS OF BUILDING A MODEL

- ALL IN
 - Throw in every variable
 - Prior Knowledge
 - Known Values
 - Preparing Backward elimination

BACKWARD ELIMINATION MODEL

MODEL

BUILT

- Step 1
 - Select significance level to stay in model (0.05)
- Step 2
 - Fit in full model with all possible predictors
- Step 3
 - Consider the predictor with highest P value
 - If P > SL, go to Step 4, otherwise **go to FIN**
- Step 4
 - Remove the Predictor
- Step 5
 - Fit the model w/o this variable*

FORWARD SELECTION MODEL

- 1. Select a SL to enter the model
- 2. Fit all possible simple regression y ~ x_n Select one with lowest P value
- Keep this variable and fit all possible models with one extra predictor added to the ones you already have
- 4. Consider the predictor with the <u>lowest</u> P value. go to Step 3, else go to FIN

BIDIRECTIONAL ELIMINATION

- 1. Select a SL to ENTER and to STAY in the model
 - e.x. SLENTER = 0.05. SLSTAY = 0.05
- 2. Perform the next of Forward Selection
- 3. Perform all step of Backward Selection

ALL PROBABLE MODELS

- 1. Select a criterion of goodness of fit
- 2. Construct all possible regression model
 - 2^N 1
- 3. Select the one with Best Criterion

BACKWARD ELIMINATION is the Fastest Model, Hence majorly used

LET's CODE!

Congrats for the DAY! You may rest your Machines ;)

For Queries & Suggestions CONTACT:

Tejas Rawal 97 65 838775 email: tejasprawal@gmail.com