
Embedded Linux
A Tour inside ARM's Kernel

Contents

1. Shell basics
2. Introduction to Embedded Linux
3. Kernel Programming for Module / Driver

Installation
4. Module / Device Driver in RPi
5. Cross Compiling & Tool Chain

Shell

• A Shell provides you with an interface to the Unix
system.

• It gathers input from you and executes programs
based on that input.

• When a program finishes executing, it displays that
program's output.

• Types of Shell
1. BASH
2. SH
3. CSH
4. KSH

Shell in Sys Architecture
APPLICATIONS

SHELL

KERNEL

HARDWARE

UTILITIES

Shell basics

• To start with basics, try the command
• echo Hello World
• a=1
• b=2
• `expr $a + $b`

But how do we try this?

Let's have The Juice SSH

Authentication

Embedded Linux

• A L inux Kernel spec ia l ly des igned for ARMx
processors can be said as Embedded Linux

• So far, maximum hardware for development; run
such Linux based environment only
• Raspberry Pi
• BeagleBone
• Banana Pi

and many more

• These usually include a ported Linux kernel with
cross-development tools, and sometimes with real
time extensions

Why Embedded Linux?

• Royalty-free
• Strong networking support
• Has already been ported to many different CPU

architectures
• Relatively small for its feature set
• Easy to configure
• Huge application base
• Modern OS (eg. memory management, kernel

modules, etc.)

Embedded Linux OS

Kernel Programming
• Kernel modules are piece of code, that can be

loaded and unloaded from kernel on demand.
• Kernel modules offers an easy way to extend the

functionality of the base kernel without having to
rebuild or recompile the kernel again.

• Most of the drivers are implemented as a Linux
kernel modules.

• When those drivers are not needed, we can unload
only that specific driver, which will reduce the kernel
image size.

• The kernel modules will have a .ko extension.
• On a normal linux system, the kernel modules will

reside inside
/lib/modules/<kernel_version>/kernel/ directory.

Module / DD in RPi 3

• PRE-REQUISITES
• sudo apt-get install linux-source
• sudo apt-get install git bc

• sudo wget
https://raw.githubusercontent.com/notro/rpi-
source/master/rpi-source -O /usr/bin/rpi-source
&& sudo chmod +x /usr/bin/rpi-source &&
/usr/bin/rpi-source -q --tag-update

• git clone --depth=1
https://github.com/raspberrypi/linux

Module / DD in RPi 3

• Change your directory to cloned Linux
• cd linux

• Create a directory of your Module
• mkdir hello

• Create 2 files inside it using any editor

PREPING THE MODULE

Module / DD in RPi 3

• Writing a Device Driver / Module

Module / DD in RPi 3

• Writing Makefile for creating targets

Module / DD in RPi 3

• Start with Building a configuration
• cd linux
• KERNEL=kernel7
• make bcm2709_defconfig

• make -j4 zImage modules dtbs
• sudo make modules_install

COMPILATION

CROSS-COMPILING

• First, you will need a suitable Linux cross-
compilation host.

• Ubuntu is preferred; since Raspbian is also a Debian
distribution, it means many aspects are similar, such
as the command lines.

• You can either do this using VirtualBox (or VMWare)
on Windows, or install it directly onto your computer.

Wikihow

TOOL CHAIN

• git clone
https://github.com/raspberrypi/tools

• Will Help you get the tools of RPi into Home
folder

• echo PATH=\$PATH:~/tools/arm-
bcm2708/gcc-linaro-arm-linux-gnueabihf-
raspbian-x64/bin >> ~/.bashrc

• source ~/.bashrc
• Updating the $PATH environment variable makes

the system aware of file locations needed for
cross-compilation.

FIN

/mITuSkillologies @mitu_group

/company/mitu-skillologiesmitu.co.in

