Embedded Linux

A Tour inside ARM's Kernel

Shell basics
Introduction to Embedded Linux

Kernel Programming for Module / Driver
Installation

Module / Device Driver in RPi
Cross Compiling & Tool Chain

A Shell provides you with an interface to the Unix
system.

e It gathers input from you and executes programs
based on that input.

« When a program finishes executing, it displays that
program's output.

 Types of Shell
BASH
SH

CSH

NN =

KERNEL

HARDWARE

e To start with basics, try the commanad
* echo Hello World

* a=1
* b=2
* "expr Sa + $b’

Let's have The Juice SSH

= W ® O ‘M 16% 0 20118

Connections
Manage your connections

Quick Connect

Frequently Used
Your most used connections Type: SSH
192.168.43.159

Connected twice

pi@192.16

[] save connection for future use

Plugins

Extend JuiceSSH with 3rd party extensions CANCEL 0K

Unlock Pro Features
Learn more about pro features

Settings

Personalise your sessions

Help
View our FAQ

Tech Library

Discover books and support JuiceSSH

® @ ‘d 16%1 20:18 g ® O U 6% 2019

he prograns included with the Debian GNU/Linux system are free software;
tribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Deblan GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

pernitted by applicable law.

Last login: Sun Sep 17 14:27:34 2017 from 192.168.43.1

ISSH is enabled and the default password for the 'pi' user has not been changed.
his is a security risk - please login as the 'pi’ user and type 'passnd’ to set a new password.

igraspt sl

Authentication Failure
Please enter the password for pi:

raspberry

Rl Show Password [Remember Password

CANCEL 0K

END PGUP FN
Connec : PGDN 5
4 5 8 9 0

A Linux Kernel specially designed for ARMx
processors can be said as Embedded Linux

« So far, maximum hardware for development; run
such Linux based environment only
« Raspberry Pi
- BeagleBone
« Banana Pi
and many more

« These usually include a ported Linux kernel with
cross-development tools, and sometimes with real
time extensions

Royalty-free
Strong networking support

Has already been ported to many different CPU
architectures

Relatively small for its feature set
Easy to configure
Huge application base

Modern OS (eg. memory management, kernel
modules, etc.)

Embedded Linux OS

“ T B B

¢

LIBREELEC

- Kernel modules are piece of code, that can be
loaded and unloaded from kernel on demand.

« Kernel modules offers an easy way to extend the
functionality of the base kernel without having to
rebuild or recompile the kernel again.

« Most of the drivers are implemented as a Linux
kernel modules.

« When those drivers are not needed, we can unload
only that specific driver, which will reduce the kernel
Image size.

« The kernel modules will have a .ko extension.

* On a normal linux system, the kernel modules will |
reside inside |
/lib/modules/<kernel_version>/kernel/ directory. —

 sudo apt-get install linux-source
 sudo apt-get install git bc

 sudo wget
https://raw.githubusercontent.com/notro/rpi-
source/master/rpi-source -O /usr/bin/rpi-source
&& sudo chmod +x /usr/bin/rpi-source &&
/usr/bin/rpi-source -q --tag-update

e git clone --depth=1
https://github.com/raspberrypi/linux

Module / DD in RPi 3

PREPING THE MODULE

Module / DD in RPi 3

1 #include <linux/module.h> /] included for all kernel modules
2 #include <linux/kernel.h> // included for KERN_INFO

3 #include <linux/init.h> // included for __init and __exit macros
4

5 MODULE_LICENSE("GPL");

6 MODULE_AUTHOR("Mister T");

7 MODULE_DESCRIPTION("This Module is Cool Bro!");

8

9 static int __init hello_init(void)

10 {

11 printk(KERN_INFO "Hey Man! I'm inside your Kernel now!\n");
12 return 0; // Non-zero return means that the module couldn't be loaded.
13}

14

15 static void _ _exit hello_cleanup(void)

16 {

17 printk(KERN_INFO "Adios homey|'\n");

18 }

19

20 module_init(hello_init);

21 module_exit(hello_cleanup);

Module / DD in RPi 3

10bj-m += hello.o

2 all:
3 make -C /lib/modules/S(shell uname -r)/build M=$(PWD) modules
4 clean:

5

make -C /lib/modules/S$(shell uname -r)/build M=$(PWD) clean|

« Start with Building a configuration
 cd linux
« KERNEL=kernel7
* make bcm2709_defconfig

* make -j4 zImage modules dtbs
« sudo make modules_install

* First, you will need a suitable Linux cross-
compilation host.

« Ubuntu is preferred; since Raspbian is also a Debian
distribution, it means many aspects are similar, such
as the command lines.

 You can either do this using VirtualBox (or VMWare)
on Windows, or install it directly onto your computer.

* git clone
https://github.com/raspberrypi/tools

 Will Help you get the tools of RPi into Home
folder

* echo PATH=\S$PATH:~/tools/arm-
bcm2708/gcc—linaro—arm-linux—gnueabihf-
raspbian-x64/bin >> ~/.bashrc

e source ~/.bashrc

« Updating the $PATH environment variable makes
the system aware of file locations needed for
cross-compilation.

FIN

+ L 4

@mitu_skillologies /miTuSkillologies @mitu_group

,r\..

in

mitu.co.in /company/mitu-skillologies

