Virtual File System (VFS) Implementation

1n Linux

Tushar B. Kute,
http://tusharkute.com

s\ tusharkute

.Com

Virtual File System

* The Linux kernel implements the concept of
Virtual File System (VFS, originally Virtual
Filesystem Switch), so that it is (to a large
degree) possible to separate actual "low-level"
fFilesystem code from the rest of the kernel.

* This APl was designed with things closely
related to the ext2 filesystem in mind. For very
different filesystems, like NFS, there are all
kinds of problems.

Virtual File System- Main Objects

* The kernel keeps track of files using in-core inodes ("index nodes"),
usually derived by the low-level filesystem from on-disk inodes.

A file may have several names, and there is a layer of dentries
("directory entries") that represent pathnames, speeding up the
lookup operation.

* Several processes may have the same file open for reading or
writing, and Ffile structures contain the required information such
as the current file position.

* Access to a filesystem starts by mounting it. This operation takes a
filesystem type (like ext2, vfat, is09660, nfs) and a device and
produces the in-core superblock that contains the information
required for operations on the filesystem; a third ingredient, the
mount point, specifies what pathname refers to the root of the
filesystem.

Virtual File System

Inode

VE'S - "™ b

MINIX EXT2
Dircctory
Cacheo

Cache

gk
Dirivers

The /proc filesystem

* The /proc filesystem contains a illusionary filesystem.

* |t does not exist on a disk. Instead, the kernel creates it in
memory.

* |t is used to provide information about the system (originally
about processes, hence the name).

* The proc filesystem is a pseudo-filesystem which provides an
interface to kernel data structures. Itis commonly mounted
at /proc.

* Most of it is read-only, but some files allow kernel variables
to be changed.

* The /proc filesystem is described in more detail in the proc
manual page.

A\ tusharkute
o — — .com

Some /proc

* [proc/1
— A directory with information about process number
1. Each process has a directory below /proc with the
name being its process identification number.
* [proc/cpuinfo
—Information about the processor, such as its type,
make, model, and performance.
* [proc/devices

—List of device drivers configured into the currently
running kernel.

a\\ tusharkute
s — .com

* [proc/filesystems

—Filesystems configured into the kernel.
* [proc/ioports

~Which I/O ports are in use at the moment.
* [proc/meminfo

—Information about memory usage, both
physical and swap.

* [proc/version
~The kernel version.

s\ tusharkute
I S— LCcom

VFS in Linux

-
Virtual File System (VFS)
extd reiser /proc
Buffer Cache
3 |

Device Drivers

Physical Devices

Create filesystem as a module

* Write a hello_proc.c program.
* Create a Makefile.

» The program and Makefile should be kept in a single
folder.

» Change directory to this Folder and execute following:
— make
— insmod hello proc.ko

— dmesg (see the kernel buffer contents, reads the kernel
log file /var/log/syslog)
— 1lsmod

— rmmod hello proc.ko

M\ tusharkute
] — — 'com

hello_proc.c

#include <linux/module.h>

#include <linux/proc_ fs.h>

#include <linux/seq file.h>

static int hello proc_show(struct seq file *m, void *v) {
seq_printf(m, "Hello proc!\n");
return O;

}

static int hello proc open(struct inode *inode, struct file *file) ({
return single open(file, hello proc show, NULL);

}

static const struct file operations hello proc fops = {
.owner = THIS MODULE,
.open = hello proc_open,
.read = seq_read,
.llseek = seq lseek,

.release = single release,
}i

d\tusharkute
o — — com

hello_proc.c

static int _ init hello proc init(void)
{
proc_create("hello proc", 0, NULL,
&hello proc fops);

return O;

}
static void _ exit hello proc_exit(void)
{

remove proc entry("hello proc", NULL);
}

MODULE LICENSE ("GPL");
module init(hello proc init);
module exit(hello proc exit);

A\ tusharkute

.com

Makefile

Obj -In += hello_prOC,o

all:
make -C /lib/modules/$ (shell uname -r)/build M=$ (PWD)
modules

clean:
make -C /lib/modules/$ (shell uname -r)/build M=$ (PWD)
clean

d\ tusharkute
——— .com

Make

-

Terminal

File Edit View Search Terminal Help
sitrc@sitrc-OptiPlex-380:~/hello_proc$|make
make -C /lib/modules/3.13.0-43-generic/build M=/home/sitrc/hello_proc modules
make[1]: Entering directory "/usr/src/linux-headers-3.13.0-43-generic'

CC [M] /home/sitrc/hello_proc/hello_proc.o

Building modules, stage 2.

MODPOST 1 modules

CC /home/sitrc/hello_proc/hello_proc.mod.o

LD [M] /home/sitrc/hello_proc/hello_proc.ko
make[1]: Leaving directory "/usr/src/linux-headers-3.13.0-43-generic’
sitrc@sitrc-OptiPlex-380:~/hello_procs I

Insert and list

Insert

o

Terminal
File Edit View Search Terminal Help

sitrc@sitrc-OptiPlex-380:~/hello_proc$| sudo insmod hello proc.ko
sitrc@sitrc-OptiPlex-380:~/hello_procS$ lsmod
Size Used by
12494 0
% 0 12617
usb_storage 48417
pci_stub 12550
vboxpci 22896
vboxnetadp 25636

hello_proc module

See the entry

- 1ls -1 /proc

- cat /proc/hello proc

d\ tusharkute
——— .com

Functions used

proc_create
—|t creates a virtual file in the /proc directory.
remove_proc_entry
— It removes a virtual file from the /proc directory.
hello_proc_show()
—|t shows the output.
seq_printf
— |t uses sequential operations on the File.
hello_proc_open()
—This is the open callback, called when the proc file is opened.
single_open()

* All the data is output at once.

d\tusharkute
] — .com

The file_operations structure

* The File_operations structure holds
pointers to functions defined by the
driver that perform various operations on
the device.

» Each field of the structure corresponds to
the address of some function defined by
the driver to handle a requested
operation.

‘-—;—I"\ | = L, =21 LK}J IL !L\';L, L,L.. -
B — .CO

Syntax of file_operations

struct file_operations {
struct module *owner;
loff_t (*llseek) (struct File *, loff _t, int);
ssize_t (*read) (struct File *, char *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char *, size_t, loff _t *);
int (*readdir) (struct file *, void *, Filldir_t);
unsigned int (*poll) (struct File *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
int (*mmap) (struct File *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*Flush) (struct file *);
int (*release) (struct inode *, struct File *);
int (*fFsync) (struct file *, struct dentry *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff _t *);
ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff _t *);

%

s\ tusharkute
] — com

Structure used in program

struct file operations hello proc fops = {
.owner = THIS MODULE,
.open = hello proc open,
.read = seq read,

.release = single release,

};

s\ tusharkute
1 m— com

Limitations to /proc file system

* Our module cannot output more than one
page of data to the pseudo-file at once.

* A page is a pre-defined amount of
memory, typically 4096 bytes (4K defined
by processor), and is available in the
PAGE_SIZE macro.

* This limitation is bypassed by using
sequence Files.

‘-—i—l"\ | n L,] | LK}J IL !L\';L, L,L.. a
| —

com

Thank you

This presentation is created using LibreOffice Impress 4.2.7.2, can be used freely as per GNU General Public License

Blogs
http://digitallocha.blogspot.in
http://kyamputar.blogspot.in

Web Resources
http://tusharkute.com

tushar@tusharkute.com

http://digitallocha.blogspot.in/

	Formal Template
	Example Bullet Point Slide
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

