
Creating a system call in Linux

Tushar B. Kute,
http://tusharkute.com

x86 Protection Rings

Level 0

Level 1

Level 2

Level 3

Operating system
kernel

Operating system
services

Applications

Privileged instructions
Can be executed only
When current privileged
Level (CPL) is 0

Monolithic Kernel

• All kernel routines are together.
– A system call interface.

• Examples:
– Linux.
– Most Unix OS.
– NT.

Kernel
many many things

entry

User
program

User
program

call

return

Micro Kernel

• Micro-kernel is “micro”
– Services are

implemented as regular
process.

– Micro-kernel get
services on behalf of
users by messaging with
the service processes.

– Examples: Taos, Mach,
L4.

kernel

entry

User
program

Services

call

return

System call mechanism

• User code can be arbitrary.

• User code cannot modify
kernel memory.

• Makes a system call with
parameters.

• The call mechanism switches
code to kernel mode.

• Execute system call.

• Return with results.

Kernel in protected
memory

entry

User
program

User
program

call

return

HW Device
Interrupt

HW exceptions

SW exceptions

System Service
Call

Virtual address
exceptions

HW implementation of the
boundary

System
service
dispatcher System

services

Interrupt
service
routines

Exception
dispatcher

Exception
handlers

VM manager’s
pager

Sys_call_table

OS Kernel : Trap Handler

Library function vs. System Call

strace and ltrace

strace

• Strace monitors the system calls and
signals of a specific program.

• It is helpful when you do not have the
source code and would like to debug the
execution of a program.

• strace provides you the execution
sequence of a binary from start to end.
– strace ls

ltrace

• ltrace monitors the library calls and
signals of a specific program.

• It is helpful when you do not have the
source code and would like to debug the
execution of a program.

• ltrace provides you the execution
sequence of a binary from start to end.
– ltrace printf

• Download the kernel source code from http://kernel.org

– Actual link:
https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.18.1.tar.xz

– Can be downloaded by command:
wget https://www.kernel.org/pub/linux/kernel/v3.x/linux-3.18.1.tar.xz

– Downloaded file is: linux-3.18.1.tar.xz

• Extract the file using command or GUI:

– tar -xvf linux-3.18.1.tar.xz

Download and extract Linux source code

http://kernel.org/

Extraction using GUI

Use this option for
Extraction

Linux Source Tree Layout

/linux-3.18.7Documentation

arch
fs

init kernel

include

ipc

drivers

net

mmlib

scripts

alpha
arm
i386
ia64
m68k
mips
mips64
ppc
s390
sh
sparc
sparc64

acorn
atm
block
cdrom
char
dio
fc4
i2c
i2o
ide
ieee1394
isdn
macintosh
misc
net
…

adfs
affs
autofs
autofs4
bfs
code
cramfs
devfs
devpts
efs
ext2
fat
hfs
hpfs
…

asm-alpha
asm-arm
asm-generic
asm-i386
asm-ia64
asm-m68k
asm-mips
asm-mips64
linux
math-emu
net
pcmcia
scsi
video …

adfs
affs
autofs
autofs4
bfs
code
cramfs
devfs
devpts
efs
ext2
fat
hfs
hpfs …

802
appletalk
atm
ax25
bridge
core
decnet
econet
ethernet
ipv4
ipv6
ipx
irda
khttpd
lapb
…

• Create a directory hello in the kernel
source directory:
–mkdir hello

• Change into this directory
–cd hello

• Create a “hello.c” file in this folder and add
the definition of the system call to it as
given below (you can use any text editor).

Define a new system call

#include <linux/kernel.h>

asmlinkage long sys_hello(void)

{

 printk(KERN_INFO “Hello world\n”);

 return 0;

}

hello.c

• Create a “Makefile” in the hello folder and
add the given line to it.
– gedit Makefile

• add the following line to it:-
– obj­y := hello.o

• This is to ensure that the hello.c file is
compiled and included in the kernel
source code.

Create Makefile

• change back into the linux-3.16 folder and open
Makefile.

– gedit Makefile

– goto line number 842 which says :- “core-y +=
kernel/ mm/ fs/ ipc/ security/ crypto/ block/ “

– change this to “core-y += kernel/ mm/ fs/ ipc/
security/ crypto/ block/ hello/“

• This is to tell the compiler that the source files of
our new system call (sys_hello()) are in present in
the hello directory.

Add the hello directory to the kernel’s Makefile

• If your system is a 64 bit system you will need to alter
the syscall_64.tbl file else syscall_32.tbl.

– cd arch/x86/syscalls
– gedit syscall_32.tbl

• Add the following line in the end of the file :-

358 i386 hello sys_hello

358 – It is the number of the system call . It should be
one plus the number of the last system call. (it was 358
in my system). This has to be noted down to make the
system call in the userspace program.

Add system call to the table

• cd include/linux/

• gedit syscalls.h

– add the following line to the end of the file just
before the #endif statement at the very bottom.

– asmlinkage long sys_hello(void);

• This defines the prototype of the function of our
system call.”asmlinkage” is a key word used to indicate
that all parameters of the function would be
available on the stack.

• Now compile the linux source code according to the
standard procedure.

Add system call to header file

• Create a “userspace.c” program in your home folder and type in the
following code :-

#include <stdio.h>

#include <linux/kernel.h>

#include <sys/syscall.h>

#include <unistd.h>

int main()

{

 long int r = syscall(358);

 printf(“System call sys_hello returned %ld\n”, r);

 return 0;

}

Test the system call

• Now compile this program using the following command.

– gcc userspace.c

• If all goes well you will not have any errors else, rectify the
errors. Now run the program using the following command.

– ./a.out
• You will see the following line getting printed in the

terminal if all the steps were followed correctly.

– “System call sys_hello returned 0“.
• Now to check the message of the kernel you can run the

following command.

– dmesg

Test the system call

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 4.2.7.2, can be used freely as per GNU General Public License

Blogs
http://digitallocha.blogspot.in
http://kyamputar.blogspot.in

Web Resources
http://tusharkute.com

http://digitallocha.blogspot.in/

	Formal Template
	Slide 2
	Example Bullet Point Slide
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

