
Data Types and Conversion

CONTENTS

A
Practicing with Data Types

Operators

A
Data Type Conversion

Comparison
Assignment

Bitwise
Logical

Membership

Identity

Precedence of Operators

A
Practicing with Data Types

NUMBERS:

• Integer
• Float
• Complex

WAP - Addition of two numbers one complex and Long using 2
variables.

Tip - Using Print statement you can print the values.
Example:
>>> print(a)
12
>>> print(c)
5.0

>>> Days = 7

>>> Pi = 3.14

>>> Long = 0122L (Prior to Python 2.x)

>>> num = 3.14j

A
Practicing with Data Types

STRING:

>>> Name = 'Instagram'

>>> Rating = "4.7 stars"

>>> Type = "Social Networking"

>>> Desc = "Made for photo sharing across the Globe with variety of
'filters' enhancing your photos with advanced tools to improve the
quality and completely made using Python Programming Language"

WAP - To print statements in a meaning full paragraph about any
MOVIE

Tip - Use + operator to append two sentences in a single print
statement.

Example:
>>> print(Name,"is a",Rating,"rated app")

A
Practicing with Data Types

STRING:

>>> to_do = ''LEARN PYTHON"

>>> print to_do

>>> print to_do[0]

>>> print to_do[6:11]

String is simply an array of characters, and hence you can achieve
a fine level of control over it.

0 1 2 3 ... 11

WAP - To Assign a string QWERTY to a variable and
print "T Y ER" using same variable in single line.

A
Practicing with Data Types

LISTS:
List is a compund data type, consisting a editable sequence of items
enclosed in square brackets ([])

>>> grocery_list = ['Tomatoes', 'Broccoli', 'Mushrooms', 'Beetroot']
>>> user_details = ['Chitvan', 25, 'A-ve']

>>> print(grocery_list[1])

>>> print(user_details *2)

>>> print(grocery_list[1:3])

>>> print(grocery_list[2:])

WAP - To add the above two lists
into new list named
"combined_list", w/o typing items
individually. Print only last 2 items
from each sublists using
combined_list.

A
Practicing with Data Types

TUPLES:
Tuples are similar to list, it is a sequence data type with read-only
access once it is created and are enclosed in round brackets (())

>>> pytuple = ('Angela', 'Hilary', 'Kiran', 2017)

>>> print(pytuple)

>>> print(pytuple[0])

>>> print(pytuple[0:3])

>>> print(pytuple *2)

>>> print(pytuple + pytuple)

WAP - To assign a tuple with
all types of integers and
string and print any one
string and integer on same
line

Ex:

Hilary 2017

A
Practicing with Data Types

DICTIONARY:
Dictionary in python is similar to Hash table, they can be stored in
Key : Value pairs. It can be in any Python type, object

>>> dict = {}

>>> dict['Apple'] = "A fruit, red in color"

>>> dict['Appoint'] = "To call upon"

>>> dict2 = {'Name':'Edward Snowden', 'code-name' : 'Citizenfour',
'emp-id' : 12203, 'OS' : 'TAILS'}

>>> print(dict)
>>> print(dict2)
>>> print(dict.keys())
>>> print(dict.values())

WAP - Design a Dictionary for
Number in Numerical to Word
as Key value pair, print it in
two columns

tip: use '\n'

A
Data Type Conversion

A
Data Type Conversion

Function Description
int(x) Converts x to an integer.

float(x) Converts x to a floating-point number.
complex(real [,imag]) Creates a complex number.

str(x) Converts object x to a string representation.
repr(x) Converts object x to an expression string.

eval(str) Evaluates a string and returns an object.

tuple(s) Converts s to a tuple.

list(s) Converts s to a list.

set(s) Converts s to a set.

dict(d) Creates a dictionary. d must be a sequence of
(key,value) tuples.

frozenset(s) Converts s to a frozen set.

chr(x) Converts an integer to a character.

A
Data Type Conversion

Function Description
unichr(x) Converts an integer to a Unicode character.

ord(x) Converts a single character to its integer value.
hex(x) Converts an integer to a hexadecimal string.
oct(x) Converts an integer to an octal string.

Operators - 1. Comparison

As the name goes, in programming paradigm it means Relational
Operators. Helps deriving a relation between two entities.
Ex. Value of a=20 & b=30
Operator Description Expression

== Values of two operand if are equal,
then condition returns true

(a == b)
FALSE

!= Values of two operand if are not
equal, then condition returns true

(a != b)
TRUE

> Left value if greater, then condition is
true

(a > b)
FALSE

< Right value if greater, then condition
is true

(a < b)
TRUE

>= Left value if greater than or equal to
Right value, condition answer true

(a >= b)
FALSE

<= Right value if greater than or equal to
Left value, condition answer true

(a <= b)
FALSE

Example:

>>> a=21
>>> b=20
>>> if(a == b):
... print("A is qual to B")
... else:
... print("They are not equal")
...
They are not equal

Try the remaining Relational Operators

Operators - 1. Comparison

Operators - 2. Assignment

Operator Description Example
= Assign values from right side operands to left

side operand
sum = a + b

+= It adds right operand to the left operand and
assign the result to left operand

b += a
b = b + a

-= It subtracts right operand from the left
operand and assign the result to left operand

b -= a
b = b - a

*= It multiplies right operand with the left
operand and assign the result to left operand

b *= a
b = b * a

/= It divides left operand with the right operand
and assign the result to left operand

b /= a

%= It takes modulus using two operands and
assign the result to left operand

b %= a

**= Performs exponential (power) calculation on
operators and assign value to the left operand

b **= a

//= It performs floor division on operators and
assign value to the left operand

b //= a

Operators - 2. Assignment

Example:
>>> a = b = c = 1
>>> a , b, c = 1, 2, 'sum ='

>>> print(c,a+b)

Multiple Assignment:
One or more variables can be assigned one or multiple values. It
shares similar terminology as of Mapping Cardinality

Operators - 3. Bitwise

Operator Description
& AND Operator copies a bit to the result, if it exists in

both operands

| OR It copies a bit, if it exists in either operand.

^ XOR It copies the bit, if it is set in one operand but not
both.

~ 1's Complement It is unary and has the effect of 'flipping'
bits.

<< Left Shift The left operand’s value is moved left by the
number of bits specified by the right operand.

>> Right Shift The left operand’s value is moved right
by the number of bits specified by the
right operand.

Operators - 3. Bitwise

Example:

>>> a=10
>>> b=13

>>> print("ANDing a:", a, " & b:", b, "is ", a&b, ":",bin(a&b))

ANDing a: 10 & b: 13 is 8 : 0b1000

WAP - to obtain ANDing of 2 complemented values a=2 & b=3 and
print it in both Integer and Binary formats

Operators - 4. Logical

Operator Description Example
and (Logical
AND)

If both the operand are true then condition
becomes true.

a and b

or (Logical
OR)

If any of the two operands are non-zero then
condition becomes true.

a or b

not (Logical
NOT)

Used to reverse the logical state of its operand. not(a and b)

Assume that variables a and b holds the value of 'True' and 'False'
respectively

Operators - 5. Membership

Python’s membership operators test for membership in a sequence,
such as strings, lists, or tuples. There are two membership operators
as explained below-
Operator Description
in Evaluates to true, if it finds a variable in the specified

sequence and false otherwise.

not in Evaluates to true, if it does not find a variable in the
specified sequence and false otherwise.

Consider the data: a = [1, 2, 3, 4, 5], x=2, y=7

Find the output of
>>> x-y in a
>>> y-x in a
>>> y not in a

Operators - 6. Identity

Operator Description
is Evaluates to true, if it finds a variable in the specified

sequence and false otherwise.

is not Evaluates to true, if it does not find a variable in the
specified sequence and false otherwise.

Identity operators compare the memory locations of two objects.
There are two Identity operators as explained below:

Consider the data: A = 1, B = 2

Find the output of
>>> A is B
>>> A is not id(A)
>>> A is not B

Precedence of Operators

Operator Description
** Exponention
~ + - Complement, Unary plus and Minus

(method names for the last two are +@
and -@)

* / % // Multiply, divide, modulo and floor
division

+ - Addition and subtraction
>> << Right and left bitwise shift
& Bitwise 'AND'
^ | Bitwise exclusive 'OR' and regular 'OR'
<= < > >= Comparison operators
<> == != Equality operators

Precedence of Operators

Operator Description
= %= /= //= -= += *=
**=

Assignment operators

is is not Identity operators
in not in Membership operators
no or and Logical operators

To Be Resumed after a Break

