
Looping & It's Control

CONTENTS

L PING

FOR Loop

NESTED Loops

WHILE Loop

BREAK

CONTINUE Loop Control Statements

PASS

.

.

WHILE L p

A while loop statement in Python programming language repeatedly
executes a target statement as long as a given condition is true. A
uniform indent is mandatory for rest of the statements to be in a
loop.
Example: Printing Factorial of a number

num = int(input("Enter a number to calc it's factorial:"))
temp=1
fact=1

while temp <= num:
 fact*=temp
 temp=temp+1

print("Factorial of", num, "is :",fact)

WAP: To Print first 10 Odd numbers by correctig foll. code

n=1
while n<=10:
 if(n%2!=0):
 print(">", n)
 n=n+1
else:
 print("Bye")

FOR L p

The for statement in Python has the ability to iterate over the items of
any sequence, such as a list or a string. Unlike the traditional FOR
loop of C / C++ / Java, Python uses different structure than others.

Example: Printing first 10 numbers of Fibonacci series

a=0; b=1
fib=1

for i in range(10):
 print(fib)
 fib = a+b
 a=b
 b=fib

WAP: To Print a the Star Pattern using single for loop as
shown below:

*
**

s=""
for i in range(5):
 s+= "*"
 print(s)
else:
 print("Goodbye")

NESTED L p

Python programming language allows the use of one loop inside
another loop. The following section shows a few examples to
illustrate the concept.

FOR LOOP

for iterating_val in sequence:

for iterating_val in sequence:
statement(s)

statement(s)

WHILE LOOP

while expression:

while expression:
statement(s)

statement(s)

Example: Printing Multiplication tables from 1 to 10

for i in range(1,11):
 for j in range(1,11):
 k=i*j
 print(k, end="\t")
 print('\n')

n = 4
while n>0:
 for i in range(4):
 x="*\t" *n
 print(x)
 n-=1
else:
 exit(0)

Example: Printing Embroidery Star Pattern

BREAK

The break statement is used for premature termination of the current
loop. After abandoning the loop, execution at the next statement is
resumed, just like the traditional break statement in C.

The most common use of break is when some external condition is
triggered requiring a hasty exit from a loop. The break statement can
be used in both while and for loops.

If you are using nested loops, the break statement stops the execution
of the innermost loop and starts executing the next line of the code
after the block.

SYNTAX:

break

EXAMPLE: Using break statement

 for i in range(10):
 print(i)
 if(i==5):
 break
 else:
 print(i)

CONTINUE

The continue statement in Python returns the control to the beginning
of the current loop.
When encountered, the loop starts next iteration without executing the
remaining statements in the current iteration.

SYNTAX:

 continue

EXAMPLE: Using Continue statement

 n= 0
 while n != 10:
 n += 1
 if n%2 == 0:
 continue
 print(n)

Affects the statements written after
continue statement

for i in range(1,11):
 for j in range(1,11):
 k=i*j
 print(k, end="\t")
 if i%3==0:
 break

 print()

EXAMPLE: BREAK in FOR - Mul. Tables

It is used when a statement is required syntactically but you do not
want any command or code to execute.

The pass statement is a null operation; nothing happens when it
executes.

The pass statement is also useful in places where your code will
eventually go, but has not been written yet i.e. in stubs).

PASS

SYNTAX:

 pass

EXAMPLE: Using Pass in order to replace a Statement which
 is undecided

 num=1
 if num<0:
 print("Number is Negative")
 elif num>0:
 pass
 else:
 print("Number is Zero")

