
Shared Memory Implementation in Linux

Tushar B. Kute,
http://tusharkute.com

Shared Memory?

• It allows two unrelated processes to access the
same logical memory.

• Shared memory is a very efficient way of
transferring data between two running
processes.

• Although the X/Open standard doesn’t require
it, it’s probable that most implementations of
shared memory arrange for the memory being
shared between different processes to be the
same physical memory.

Shared Memory?

• Shared memory is a special range of addresses that
is created by IPC for one process and appears in the
address space of that process.

• Other processes can then “attach” the same shared
memory segment into their own address space. All
processes can access the memory locations just as if
the memory had been allocated by malloc .

• If one process writes to the shared memory, the
changes immediately become visible to any other
process that has access to the same shared memory.

Synchronization in Shared Memory?

• Shared memory provides an efficient way of sharing
and passing data between multiple processes.

• By itself, shared memory doesn’t provide any
synchronization facilities. Because it provides no
synchronization facilities, you usually need to use
some other mechanism to synchronize access to the
shared memory.

• Typically, you might use shared memory to provide
efficient access to large areas of memory and pass
small messages to synchronize access to that memory.

Shared Memory

The functions

• The functions for shared memory resemble those
for semaphores:
#include <sys/shm.h>

void *shmat(int shm_id, const void *shm_addr, int
shmflg);

int shmctl(int shm_id, int cmd, struct shmid_ds *buf);

int shmdt(const void *shm_addr);

int shmget(key_t key, size_t size, int shmflg);

• As with semaphores, the include files sys/types.h
and sys/ipc.h are normally automatically included
by shm.h .

shmget

• You create shared memory using the shmget function:

int shmget(key_t key, size_t size, int shmflg);
• As with semaphores, the program provides key , which effectively

names the shared memory segment, and the shmget function
returns a shared memory identifier that is used in subsequent
shared memory functions. There’s a special key value,
IPC_PRIVATE , that creates shared memory private to the process.

• The second parameter, size , specifies the amount of memory
required in bytes.

• The third parameter, shmflg , consists of nine permission flags
that are used in the same way as the mode flags for creating files.
A special bit defined by IPC_CREAT must be bitwise ORed with
the permissions to create a new shared memory segment.

shmat

• When you first create a shared memory segment, it’s not accessible by
any process. To enable access to the shared memory, you must attach it
to the address space of a process. You do this with the shmat function:

void *shmat(int shm_id, const void *shm_addr, int shmflg);
• The first parameter, shm_id , is the shared memory identifier returned

from shmget .
• The second parameter, shm_addr , is the address at which the shared

memory is to be attached to the current process. This should almost
always be a null pointer, which allows the system to choose the address
at which the memory appears.

• The third parameter, shmflg, is a set of bitwise flags. The two possible
values are SHM_RND, which, in conjunction with shm_addr , controls
the address at which the shared memory is attached, and SHM_RDONLY
, which makes the attached memory read-only.

shmctl

• The control functions for shared memory are (thankfully)
somewhat simpler than the more complex ones for
semaphores:

int shmctl(int shm_id, int command, struct shmid_ds *buf);
• The shmid_ds structure has at least the following members:

struct shmid_ds {

uid_t shm_perm.uid;

uid_t shm_perm.gid;

mode_t shm_perm.mode;

}
• The first parameter, shm_id , is the identifier returned from

shmget .

shmctl

• The second parameter, command , is the action to take.
It can take three values, shown in the following table.

• The third parameter, buf , is a pointer to the structure
containing the modes and permissions for the shared
memory.

Programs

• Lets do the coding now...

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 5.3.2.2, can be used freely as per GNU General Public License

Blogs
http://digitallocha.blogspot.in
http://kyamputar.blogspot.in

Web Resources
http://mitu.co.in

http://tusharkute.com

/mITuSkillologies @mitu_group

http://digitallocha.blogspot.in/

	Formal Template
	Example Bullet Point Slide
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

