
Working with Hive

Tushar B. Kute,
http://tusharkute.com



Hadoop Ecosystem

• The Hadoop ecosystem contains different sub-
projects (tools) such as Sqoop, Pig, and Hive that 
are used to help Hadoop modules.
– Sqoop: It is used to import and export data to 

and fro between HDFS and RDBMS.
– Pig: It is a procedural language platform used 

to develop a script for MapReduce 
operations.

– Hive: It is a platform used to develop SQL 
type scripts to do MapReduce operations.

 Q,ki' m bc2



Data types

• All the data types in Hive are classified into four 
types, given as follows:
– Column Types
– Literals
– Null Values
– Complex Types



Column Types

• Column type are used as column data types of 
Hive. They are as follows:
– Integral Types

• Integer type data can be specified using 
integral data types, INT. When the data 
range exceeds the range of INT, you need 
to use BIGINT and if the data range is 
smaller than the INT, you use SMALLINT. 
TINYINT is smaller than SMALLINT.



Integral  Types

Type Postfix Example

TINYINT Y 10Y

SMALLINT S 10S

INT - 10

BIGINT L 10L



String  Types

Data Type Length

VARCHAR 1 to 65535

CHAR 255

String type data types can be specified using single quotes (' ') or double 
quotes (" "). It contains two data types: VARCHAR and CHAR. Hive 
follows C-types escape characters.



Column Types

• Timestamp
– It supports traditional UNIX timestamp with optional nanosecond 

precision. It supports java.sql.Timestamp format “YYYY-MM-DD 
HH:MM:SS.fffffffff” and format “yyyy-mm-dd hh:mm:ss.ffffffffff”.

• Dates

– DATE values are described in year/month/day format in the form 
{{YYYY--MM--DD}}.

• Decimals
– The DECIMAL type in Hive is as same as Big Decimal format of 

Java. It is used for representing immutable arbitrary precision. 
The syntax and example is as follows:

DECIMAL(precision, scale)

decimal(10,0)



Union Types

• Union is a collection of heterogeneous data types. You can create an 
instance using create union. The syntax and example is as follows:

UNIONTYPE <int, double, array<string>, 
struct<a:int,b:string>>

{0:1}

{1:2.0}

{2:["three","four"]}

{3:{"a":5,"b":"five"}}

{2:["six","seven"]}

{3:{"a":8,"b":"eight"}}

{0:9}

{1:10.0}



Literals

• The following literals are used in Hive:

• Floating Point Types
– Floating point types are nothing but numbers with 

decimal points. Generally, this type of data is composed of 
DOUBLE data type.

• Decimal Type

– Decimal type data is nothing but floating point value with 
higher range than DOUBLE data type. The range of 
decimal type is approximately -10-308 to 10308 .

• Null Value
– Missing values are represented by the special value NULL.



Complex Types

• The Hive complex data types are as follows:

• Arrays
– Arrays in Hive are used the same way they are used in Java.

Syntax: ARRAY<data_type>

• Maps
– Maps in Hive are similar to Java Maps.

Syntax: MAP<primitive_type, data_type>

• Structs
– Structs in Hive is similar to using complex data with comment.

Syntax: STRUCT<col_name : data_type [COMMENT 
col_comment], ...>



Database Operations

Hive is a database technology that can define databases and tables to analyze 
structured data. The theme for structured data analysis is to store the data in a 
tabular manner, and pass queries to analyze it. This chapter explains how to 
create Hive database. Hive contains a default database named default.



Create Database

• Create Database is a statement used to create a database 
in Hive. 

• A database in Hive is a namespace or a collection of tables. 
The syntax for this statement is as follows:

CREATE DATABASE|SCHEMA [IF NOT EXISTS] 
<database name>;

Here, IF NOT EXISTS is an optional clause, which notifies 
the user that a database with the same name already 
exists. We can use SCHEMA in place of DATABASE in this 
command.



Create Database

• The following query is executed to create a database named 
mydb:

hive> CREATE DATABASE [IF NOT EXISTS] mydb;

or

hive> CREATE SCHEMA mydb;

• The following query is used to verify a databases list:

hive> SHOW DATABASES;

default

mydb



Drop Database

• Drop Database is a statement that drops all the 
tables and deletes the database.
– Its syntax is as follows:

DROP DATABASE StatementDROP 
(DATABASE|SCHEMA) [IF EXISTS] 
database_name [RESTRICT|CASCADE];

• The following queries are used to drop a database. 
Let us assume that the database name is mydb.

hive> DROP DATABASE IF EXISTS mydb;



Drop Database

• The following query drops the database using 
CASCADE. It means dropping respective tables 
before dropping the database.

hive> DROP DATABASE IF EXISTS userdb 
CASCADE;

• The following query drops the database using 
SCHEMA.

hive> DROP SCHEMA userdb;

• This clause was added in Hive 0.6.



Create Table

• Create Table is a statement used to create a table in 
Hive. The syntax and example are as follows:

• Syntax:

CREATE [TEMPORARY] [EXTERNAL] TABLE [IF 
NOT EXISTS] [db_name.] table_name

[(col_name data_type [COMMENT 
col_comment], ...)]

[COMMENT table_comment]

[ROW FORMAT row_format]

[STORED AS file_format]



Create Table : Example

Sr. No. Field Name Data type

1 Eid Int

2 Name String

3 Salary Float

4 Designation String



Create Table : Example

• The following query creates a table named employee 
using the above data.

hive> CREATE TABLE IF NOT EXISTS 
employee ( eid int, name String,

> salary String, destination String)

> COMMENT ‘Employee details’

> ROW FORMAT DELIMITED

> FIELDS TERMINATED BY ‘\t’

> LINES TERMINATED BY ‘\n’

> STORED AS TEXTFILE;



Load data statement

• Generally, after creating a table in SQL, we can insert 
data using the Insert statement. But in Hive, we can 
insert data using the LOAD DATA statement.

• While inserting data into Hive, it is better to use LOAD 
DATA to store bulk records.

• There are two ways to load data: one is from local file 
system and second is from Hadoop file system.

• Syntax:

– LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] 
INTO TABLE tablename [PARTITION (partcol1=val1, 
partcol2=val2 ...)]



Load data statement

LOAD DATA LOCAL INPATH '/home/rashmi/sample.txt'
> OVERWRITE INTO TABLE employee;



Alter Table

ALTER TABLE name RENAME TO new_name

ALTER TABLE name ADD COLUMNS (col_spec[, col_spec ...])

ALTER TABLE name DROP [COLUMN] column_name

ALTER TABLE name CHANGE column_name new_name 
new_type

ALTER TABLE name REPLACE COLUMNS (col_spec[, 
col_spec ...])



Alter Table – Rename to...

ALTER TABLE employee RENAME TO emp;



Change statement



Change statement example

• hive> ALTER TABLE employee CHANGE name 
ename String;

• hive> ALTER TABLE employee CHANGE 
salary salary Double;



Add column statement

• hive> ALTER TABLE employee ADD COLUMNS (

> dept STRING COMMENT 'Department name');



Replace statement

hive> ALTER TABLE employee REPLACE COLUMNS 
(

> eid INT empid Int,

> ename STRING name String);



Drop table statement

• The syntax is as follows:

– DROP TABLE [IF EXISTS] table_name;

• The following query drops a table named employee:

– hive> DROP TABLE IF EXISTS employee;



Partitioning 

• Hive organizes tables into partitions. It is a way of 
dividing a table into related parts based on the 
values of partitioned columns such as date, city, and 
department. Using partition, it is easy to query a 
portion of the data.

• Tables or partitions are sub-divided into buckets, to 
provide extra structure to the data that may be 
used for more efficient querying. 

• Bucketing works based on the value of hash 
function of some column of a table.



Partitioning  - Example   

• ALTER TABLE table_name ADD [IF NOT EXISTS] PARTITION 
partition_spec [LOCATION 'location1'] partition_spec 
[LOCATION 'location2'] ...;

• partition_spec: (p_column = p_col_value, p_column 
=p_col_value, ...)



Built-in operators

• There are four types of operators in Hive:

1. Relational Operators

2. Arithmetic Operators

3. Logical Operators

4. Complex Operators



Relational operators

• A = B

• A != B

• A < B

• A = B

• A >= B

• A <= B

• A IS NULL

• A IS NOT NULL



Relational operators – Example 



Arithmetic operators

• A + B

• A – B 

• A * B

• A / B

• A % B

• A & B

• A | B

• A ^ B

• ~A



Arithmetic operators



Logical operators

• A AND B

• A && B

• A OR B

• A || B

• NOT A

• !A



Logical operators



Built-in functions



Built-in functions



Built-in functions



Built-in functions – Example 



Aggregate functions



Examples

• SELECT count(*) from file;

• SELECT sum(id) from file;

• SELECT avg(yoj) from file;

• SELECT max(yoj) from file;



Views

• Views are generated based on user requirements. 
You can save any result set data as a view. 

• The usage of view in Hive is same as that of the view 
in SQL. It is a standard RDBMS concept.

• We can execute all DML operations on a view.

• Creating a view:

CREATE VIEW [IF NOT EXISTS] view_name 
[(column_name [COMMENT column_comment], ...) ]

[COMMENT table_comment]

AS SELECT ...



Views – example 



Dropping  a view

• Use the following syntax to drop a view:

DROP VIEW view_name

• The following query drops a view named as file_2010:

hive> DROP VIEW file_2010;



Index

• An Index is nothing but a pointer on a particular column 
of a table. 

• Creating an index means creating a pointer on a 
particular column of a table.

•
• hive> CREATE INDEX index_yoj ON TABLE file(yoj)

> AS 'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler' 
WITH DEFERRED REBUILD;



Index – Example 



Drop index

• The following syntax is used to drop an index:

DROP INDEX <index_name> ON <table_name>

• The following query drops an index named index_salary:

hive> DROP INDEX index_salary ON employee;



Select … order by

• The ORDER BY clause is used to retrieve the details based 
on one column and sort the result set by ascending or 
descending order.

• Syntax:

SELECT [ALL | DISTINCT] select_expr, select_expr, ...

FROM table_reference

[WHERE where_condition]

[GROUP BY col_list]

[HAVING having_condition]

[ORDER BY col_list]]

[LIMIT number];



Select … order by-  Example



Select… group by

• The GROUP BY clause is used to group all the records in a 
result set using a particular collection column. It is used to 
query a group of records.

• Syntax:

SELECT [ALL | DISTINCT] select_expr, select_expr, ...

FROM table_reference

[WHERE where_condition]

[GROUP BY col_list]

[HAVING having_condition]

[ORDER BY col_list]]

[LIMIT number];



Select… group by – example 



Joins

• JOINS is a clause that is used for combining specific 
fields from two tables by using values common to 
each one. 

• It is used to combine records from two or more 
tables in the database. 

• It is more or less similar to SQL JOINS.



Joins – Examples 



Joins – Examples 



Left outer join

• The HiveQL LEFT OUTER JOIN returns all the rows 
from the left table, even if there are no matches in 
the right table. 

• This means, if the ON clause matches 0 (zero) 
records in the right table, the JOIN still returns a 
row in the result, but with NULL in each column 
from the right table.

• A LEFT JOIN returns all the values from the left 
table, plus the matched values from the right table, 
or NULL in case of no matching JOIN predicate.



Left outer join



Right outer join

• The HiveQL RIGHT OUTER JOIN returns all the rows 
from the right table, even if there are no matches in 
the left table. 

• If the ON clause matches 0 (zero) records in the left 
table, the JOIN still returns a row in the result, but 
with NULL in each column from the left table.

• A RIGHT JOIN returns all the values from the right 
table, plus the matched values from the left table, 
or NULL in case of no matching join predicate.



Right outer join – Example 



References



tushar@tusharkute.com

      Thank you

This presentation is created using LibreOffice Impress 4.2.8.2, can be used freely as per GNU General Public License

Blogs
http://digitallocha.blogspot.in
http://kyamputar.blogspot.in

Web Resources
http://mitu.co.in 

http://tusharkute.com

http://digitallocha.blogspot.in/

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

