Working with Hive

Tushar B. Kute,
http://tusharkute.com

s\ tusharkute

com

Hadoop Ecosystem

* The Hadoop ecosystem contains different sub-
projects (tools) such as Sqoop, Pig, and Hive that
are used to help Hadoop modules.

— Sqoop: It is used to import and export data to
and fro between HDFS and RDBMS.

— Pig: It is a procedural language platform used
to develop a script for MapReduce
operations.

— Hive: It is a platform used to develop SQL
type scripts to do MapReduce operations.

ﬂ.‘{ll_m beé}o;“
e

Data types

* All the data types in Hive are classified into Four
types, given as follows:

— Column Types
— Literals

— Null Values

— Complex Types

d\ tusharkute
—— .com

Column Types

* Column type are used as column data types of
Hive. They are as follows:

— Integral Types

* Integer type data can be specified using
integral data types, INT. When the data
range exceeds the range of INT, you need
to use BIGINT and if the data range is
smaller than the INT, you use SMALLINT.
TINYINT is smaller than SMALLINT.

Integral Types

Type Postfix Example
TINYINT Y 10Y
SMALLINT S 105
INT - 10
BIGINT 1 Lol

‘i‘\ L'_t*_ nal L__- LL'_

.com

String Types

String type data types can be specified using single quotes (' ') or double
quotes (" "). It contains two data types: VARCHAR and CHAR. Hive
follows C-types escape characters.

Data Type Length
VARCHAR 1to 65535

CHAR 255

d\ tusharkute
fE——— .com

Column Types

* Timestamp

— |t supports traditional UNIX timestamp with optional nanosecond
precision. It supports java.sqgl.Timestamp format “YYYY-MM-DD
HH:MM:SS.FFFFFFFFF” and format “yyyy-mm-dd hh:mm:ss.FFFFFFFFFF”.

* Dates

— DATE values are described in year/month/day format in the form
{YYYY--MM--DD}}.
- Decimals

— The DECIMAL type in Hive is as same as Big Decimal format of
Java. It is used for representing immutable arbitrary precision.
The syntax and example is as follows:

DECIMAL (precision, scale)
decimal (10,0)

f:‘\LLb ndafl L__- e
e .com

Union Types

* Union is a collection of heterogeneous data types. You can create an
instance using create union. The syntax and example is as follows:

UNIONTYPE <int, double, array<string>,
struct<a:int,b:string>>

{0:1}

{1:2.0}
{2:["three","four"]}
{3:{"a":5,"b":"five"}}
{2:["six","seven"]}
{3:{"a":8,"b":"eight"}}
{0:9}

{1:10.0}

d\\ tusharkute
—— .com

Literals

The Following literals are used in Hive:

Floating Point Types

— Floating point types are nothing but numbers with
decimal points. Generally, this type of data is composed of
DOUBLE data type.

Decimal Type

— Decimal type data is nothing but floating point value with
higher range than DOUBLE data type. The range of
decimal type is approximately -10-308 to 10308,

Null Value
— Missing values are represented by the special value NULL.

f:‘\LLb ndafl L__- e
e .com

Complex Types

The Hive complex data types are as follows:
Arrays
— Arrays in Hive are used the same way they are used in Java.

Syntax: ARRAY<data type>

* Maps

— Maps in Hive are similar to Java Maps.
Syntax: MAP<primitive type, data type>

Structs

— Structs in Hive is similar to using complex data with comment.

Syntax: STRUCT<col name : data type [COMMENT
col comment], ...>

d\ tusharkute
fE——— .com

Database Operations

Hive is a database technology that can define databases and tables to analyze
structured data. The theme for structured data analysis is to store the data in a
tabular manner, and pass queries to analyze it. This chapter explains how to
create Hive database. Hive contains a default database named default.

d\\ tusharkute

.com

Create Database

* Create Database is a statement used to create a database
in Hive.

* A database in Hive is a namespace or a collection of tables.
The syntax for this statement is as follows:

CREATE DATABASE |SCHEMA [IF NOT EXISTS]
<database name>;

Here, IF NOT EXISTS is an optional clause, which notifies
the user that a database with the same name already
exists. We can use SCHEMA in place of DATABASE in this

command.

‘.{‘\L'_t*_LL{LL L__-LL'_

.com

Create Database

* The following query is executed to create a database named
mydb:

hive> CREATE DATABASE [IF NOT EXISTS] mydb;
or
hive> CREATE SCHEMA mydb;

* The Following query is used to verify a databases list:

hive> SHOW DATABASES;
default
mydb

d\\ tusharkute
—— .com

Drop Database

* Drop Database is a statement that drops all the
tables and deletes the database.

— |ts syntax is as follows:

DROP DATABASE StatementDROP
(DATABASE | SCHEMA) [IF EXISTS]
database name [RESTRICT|CASCADE];

* The fFollowing queries are used to drop a database.
Let us assume that the database name is mydb.

hive> DROP DATABASE IF EXISTS mydb;

tusharkute
1] - — 'com

A\ ¢

Drop Database

* The fFollowing query drops the database using
CASCADE. It means dropping respective tables
before dropping the database.

hive> DROP DATABASE IF EXISTS userdb
CASCADE;

* The fFollowing query drops the database using
SCHEMA.

hive> DROP SCHEMA userdb;
* This clause was added in Hive 0.6.

‘.{‘\L'_tz nal L__- LL'_
- .com

Create Table

* Create Table is a statement used to create a table in
Hive. The syntax and example are as follows:

* Syntax:

CREATE [TEMPORARY] [EXTERNAL] TABLE [IF
NOT EXISTS] [db name.] table name

[(col name data type [COMMENT
col comment], ...)]

[COMMENT table comment]
[ROW FORMAT row format]
[STORED AS file format]

f:‘\tLEL‘L@L kute

.com

Create Table : Example

Sr. No. Field Name Data type
1 Eid Int
2 Name String
3 Salary Float
4 Designation String

tusharkute
S— com

i
I—““
—
-

Create Table : Example

* The following query creates a table named employee
using the above data.

hive> CREATE TABLE IF NOT EXISTS
employee (eid int, name String,

salary String, destination String)
COMMENT ‘Employee details’

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ‘\t’

LINES TERMINATED BY ‘\n’

STORED AS TEXTFILE;

VvV V V V VYV

_I{i\\t isharkute

p— .com

Load data statement

* Generally, after creating a table in SQL, we caninsert
data using the Insert statement. But in Hive, we can
insert data using the LOAD DATA statement.

* While inserting data into Hive, it is better to use LOAD
DATA to store bulk records.

* There are two ways to load data: one is from local File
system and second is from Hadoop file system.

* Syntax:

— LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE]
INTO TABLE tablename [PARTITION (partcol1=vali,
partcol2=val2 ...)]

_I{i\\t isharkute

- — Lcom

Load data statement

Gopal 45000 Technical manager
Manisha 45000 Proof reader

Masthanvali 40000 Technical writer
Krian 40000 Hr Admin

Kranthi 30000 Op Admil}

LOAD DATA LOCAL INPATH '/home/rashmi/sample.txt'
> OVERWRITE INTO TABLE employee;

Alter Table

ALTER TABLE name RENAME TO new_name
ALTER TABLE name ADD COLUMNS (col_spec], col_spec...])
ALTER TABLE name DROP [COLUMN] column_name

ALTER TABLE name CHANGE column_name new_name
new_type

ALTER TABLE name REPLACE COLUMNS (col_spec]|,
col_spec...])

d\ tusharkute
fE——— .com

Alter Table — Rename to...

ALTER TABLE employee RENAME TO emp;

,,ni_\\,h:_uaanark;u Le

.com

Change statement

The following table contains the fields of employee table and it shows the fields

to be changed (in bold).

Field Name Convert from Change Field Convert to
Data Type Name Data Type
eid int eid int
name String ename String
salary Float salary Double
designation String designation String

Change statement example b

° hive> ALTER TABLE employee CHANGE name
ename String;

* hive> ALTER TABLE employee CHANGE
salary salary Double;

d\\ tusharkute
—— .com

Add column statement

°* hive> ALTER TABLE employee ADD COLUMNS (
> dept STRING COMMENT 'Department name') ;

a\ tusharkute
“e——— .com

Replace statement

hive> ALTER TABLE employee REPLACE COLUMNS
(
> eid INT empid Int,

> ename STRING name String) ;

a\ tusharkute
“e——— .com

Drop table statement

* The syntax is as follows:
— DROP TABLE [IF EXISTS] table name;

* The following query drops a table named employee:
— hive> DROP TABLE IF EXISTS employee;

d\\ tusharkute
—— .com

Partitioning

* Hive organizes tables into partitions. It is a way of
dividing a table into related parts based on the
values of partitioned columns such as date, city, and
department. Using partition, it is easy to query a
portion of the data.

* Tables or partitions are sub-divided into buckets, to
provide extra structure to the data that may be
used fFor more efficient querying.

* Bucketing works based on the value of hash
function of some column of a table.

_fi\\t isharkute
— .Lom

Partitioning - Example

- ALTER TABLE table_name ADD [IF NOT EXISTS] PARTITION
partition_spec [LOCATION ‘'location1'] partition_spec
[LOCATION 'location2'] ...;

+ partition_spec: (p_column =p_col_value, p_column
=p_col_value, ...)

hive> select * from file;

Rajesh IT 2010
Suresh CS 2012
Awez Ccs 2012
Parmeet CS 2010

Time taken: 0.074 seconds, Fetched: 4 row(s)

Built-in operators

* There are four types of operators in Hive:
1. Relational Operators
2. Arithmetic Operators
3. Logical Operators
4. Complex Operators

al\tusharkute

_ .com

Relational operators

- A=B
- Al=B

° A<B

- A=B

- A>=B

- A<=B

* AISNULL

* AISNOT NULL

,,ni_\\,h:_uaanark;u Le

.com

Relational operators — Example &

hive> select * from file where yoj<2011;

Rajesh IT 2010

Parmeet CS 2010
Time taken: 0.11 seconds, Fetched: 2 row(s)
hive> select * from file where dept='CS';

Suresh CsS 2012

Awez Cs 2012

Parmeet CS 2010
Time taken: 0.084 seconds, Fetched: 3 row(s)
hive> select * from file where dept!='CS’';

IT 2010
0.124 seconds, Fetched: 1 row(s)

Arithmetic operators

- A+B
- A—B
- A*B
- A/B
° A%B
- A&B
- A|B
- AAB
© ~A

Al\tusharkute

.com

fB\m iTu

skillologies

hive> SELECT id+l1l, dept FROM file;

T

CS

CS

CS
Time taken: 0.068 seconds, Fetched: 4 row(s)
hive> SELECT id, yoj%2000 FROM file;

Time taken: 0.076 seconds, Fetched: 4 row(s)
hive> [

L0m

Logical operators

- AANDB
- A&&B

- AORB

* AllB

- NOTA

1A

Al\tusharkute

.com

Logical operators

hive> SELECT * from file where id!=103 OR name IS NOT NULL:

Rajesh IT 2010
Suresh CS 2012
Awez CS 2012
Parmeet CS 2010
Time taken: 0.107 seconds, Fetched: 4 row(s)
hive> SELECT * from file where dept='CS' AND yoj=2012;

Suresh CS 2012

Awez CSs 2012
Time taken: 0.069 seconds, Fetched: 2 row(s)
hive> |}

Built-in Functions

Return Signature Description
Type

BIGINT | round(double a) | It returns the rounded BIGINT value of the double.

BIGINT | floor(double a) It returns the maximum BIGINT value that is equal
or less than the double.

BIGINT | ceil(double a) It returns the minimum BIGINT value that is equal
or greater than the double.

double rand(), rand(int | It returns a random number that changes from row

seed) to row.
string concat(string A, | It returns the string resulting from concatenating
string B,...) B after A.

‘.{‘\L'_tz nal L__- LL'_
- .com

Built-in Functions

string substr(string A, It returns the substring of A starting from start
int start) position till the end of string A.

string substr(string A, It returns the substring of A starting from start
int start, int position with the given length.
length)

string upper(string A) It returns the string resulting from converting all

characters of A to upper case.

string ucase(string A) Same as above.

string lower(string A) It returns the string resulting from converting all
characters of B to lower case.

d\\ tusharkute
—— .com

Built-in Functions

string lcase(string A) Same as above.

string trim(string A) It returns the string resulting from trimming
spaces from both ends of A.

string ltrim(string A) It returns the string resulting from trimming
spaces from the beginning (left hand side) of A.

string rtrim(string A) It returns the string resulting from trimming
spaces from the end (right hand side) of A.

a\ tusharkute
“e——— .com

f\m iTu

skillologies

hive> SELECT concat (name, dept), ucase(name) from file;

Time taken: 0.059 seconds, Fetched:
hive> SELECT round(2.6) from file;

Time taken: 0.219 seconds, Fetched:
hive> [

Aggregate functions

Return Signature Description
Type

BIGINT count(*), count(*) - Returns the total number of retrieved
count(expr), rOwWSs.

DOUBLE sum(col), It returns the sum of the elements in the group or
sum(DISTINCT | the sum of the distinct values of the column in the
col) group.

DOUBLE avg(col), It returns the average of the elements in the
avg(DISTINCT | group or the average of the distinct values of the
col) column in the group.

DOUBLE min(col) It returns the minimum value of the column in the

group.

DOUBLE max(col) It returns the maximum value of the column in

the group.

d\ tusharkute
fE——— .com

Examples

SELECT count(*) from File;
SELECT sum(id) from File;

SELECT avg(yoj) from File;
SELECT max(yoj) from file;

a\ tusharkute
“e——— .com

* Views are generated based on user requirements.
You can save any result set data as a view.

* The usage of view in Hive is same as that of the view
in SQL. It is a standard RDBMS concept.

* We can execute all DML operations on a view.

* Creating a view:

CREATE VIEW [IF NOT EXISTS] view_name
[(column_name [COMMENT column_comment], ...)]

[COMMENT table_comment]
AS SELECT ...

f:‘\LLb ndafl L__- e
e .com

Views — example &

hive> CREATE VIEW file_;ﬂlﬂ AS
> SELECT * FROM file
> where yoj=2010;

OK
Time taken: 0.103 seconds
hive> select * from file_;ﬂlﬂ;

Rajesh IT 2010

Parmeet CS 2010
Time taken: 0.08 seconds, Fetched: 2 row(s)
hive> |

Dropping a view

* Use the following syntax to drop a view:
DROP VIEW view name
* The following query drops a view named as file_2010:

hive> DROP VIEW file 2010;

d\ tusharkute

.com

* An Indexis nothing but a pointer on a particular column
of a table.

* Creating an index means creating a pointer on a
particular column of a table.

* hive> CREATE INDEX index_yoj ON TABLE Ffile(yoj)

> AS 'org.apache.hadoop.hive.ql.index.compact.CompactindexHandler"
WITH DEFERRED REBUILD;

d\\ tusharkute
—— .com

f\m iTu

skillologies

hive> CREATE INDEX in salary ON TABLE file(yo])
'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler' WITH DEFERRED REBUILD;

> AS

OK
Time taken: 0.485 seconds

file 2010
tushar file in salary

tushar file index salary
Time taken: 0.019 seconds, Fetched: 7 row(s)

hive> drop index tushar file in salary _ on file;

OK
Time taken: 0.027 seconds

hive> ||

Drop index

* The following syntax is used to drop an index:

DROP INDEX <index_name> ON <table_name>

* The following query drops an index named index_salary:

hive> DROP INDEX index salary ON employee;

d\\ tusharkute
—— .com

Select ... order by

* The ORDER BY clause is used to retrieve the details based

on one column and sort the result set by ascending or
descending order.

* Syntax:
SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference

'WHERE where_condition]

‘GROUP BY col_list]

'HAVING having_condition]

ORDER BY col_list]]

LIMIT number];

d\ tusharkute
fE——— .com

f\m iTu

skillologies

hive> select * from file order by yoj;
Query ID = hduser 20160703164810 7d84d930-fldd-4ed3-9410-1f09af20a74d
Total jobs =1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Job running in-process (local Hadoop)
2016-07-03 16:48:13,401 Stage-1 map = 100%, reduce = 100%
Ended Job = job local590275424 0005
MapReduce Jobs Launched:
Stage-Stage-1: HDFS Read: 6000 HDFS Write: 0 SUCCESS
Total MapReduce CPU Time Spent: 0 msec

Parmeet 2010
Rajesh IT 2010
Awez Cs 2012
Suresh CsS 2012
Time taken: 2.462 seconds, Fetched: 4 row(s)

Select... group by

* The GROUP BY clause is used to group all the records in a

result set using a particular collection column. It is used to
query a group of records.

* Syntax:
SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference

'WHERE where_condition]

‘GROUP BY col_list]

'HAVING having_condition]

ORDER BY col_list]]

LIMIT number];

d\ tusharkute
fE——— .com

f\m iTu

skillologies

hive> select dept, count(*) from file group by dept;
Query ID = hduser 20160703165351 da8962cl-3407-49bd-bd57-c463d2aab7ff
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Job running in-process (local Hadoop)
2016-07-03 16:53:53,780 Stage-1 map = 100%, reduce = 1003
Ended Job = job locall959421652 0007
MapReduce Jobs Launched:
Stage-Stage-1: HDFS Read: 6300 HDFS Write: O SUCCESS
Total MapReduce CPU Time Spent: 0 msec

Time taken: 1.86 seconds, Fetched: 2 row(s)

* JOINS is a clause that is used for combining specific

fFields from two tables by using values common to
each one.

* |tis used to combine records from two or more
tables in the database.

* |t is more or less similar to SQL JOINS.

d\ tusharkute
fE——— .com

Joins — Examples

hive> select * from customer:;

Kavita 24 Sangvi 34000

Chatur 23 Kothrud 35000

Fatema 31 Lohgad 20000

Rohan 27 Pune Station 22000
Time taken: 0.061 seconds, Fetched: 4 row(s)

hive> select * from orders;

NULL 1200
NULL 3400
NULL 2150
NULL 2 3420
Time taken: 0.057 seconds, Fetched: 4 row(s)

Joins — Examples

SELECT c.ID, c.NAME, c.AGE, o.AMOUNT
FROM CUSTOMER c JOIN ORDERS o

ON (c.ID = o.c_id);

ID = hduser 20160703175303_ac7c2fcc-c9f2-
jobs = 1

Total MapReduce CPU Time Spent: 0 msec

Chatur 23 3420
Fatema 31 1200
Fatema 31 3400
Rohan 27 2150
Time taken: 9.21 seconds, Fetched: 4 row(s)

& — Lcom

Left outer join

* The HiveQL LEFT OUTER JOIN returns all the rows
from the left table, even if there are no matches in
the right table.

* This means, if the ON clause matches 0 (zero)
records in the right table, the JOIN still returns a
row in the result, but with NULL in each column
from the right table.

* A LEFT JOIN returns all the values from the left
table, plus the matched values from the right table,
or NULL in case of no matching JOIN predicate.

_I{i\\t isharkute

- — Lcom

Left outer join

hive> select c¢.ID, c.NAME, o.AMOUNT
> FROM CUSTOMER c
> LEFT OUTER JOIN ORDERS o
> ON (c.ID = o0.C_ID);

MapReduce Jobs Launched:
Stage-Stage-3: HDFS Read: 106 HDFS Write: 0 SUCCESS
Total MapReduce CPU Time Spent: 0 msec

Kavita NULL
Chatur 3420
Fatema 1200
Fatema 3400
2150

.194 seconds, Fetched: 5 row(s)

o

\]
I“ "
o

.Com

Right outer join

* The HiveQL RIGHT OUTER JOIN returns all the rows
from the right table, even if there are no matches in

the

left table.

* |f the ON clause matches 0 (zero) records in the left

tab
wit
* AR
tab

le, the JOIN still returns a row in the result, but
N NULL in each column from the left table.

GHT JOIN returns all the values from the right
e, plus the matched values from the left table,

or NULL in case of no matching join predicate.

=
I—‘.‘“
o

-

Shal Lxxd L_L_
LCom

Right outer join — Example

hive> select c¢.ID, c¢.NAME, o.AMOUNT
> FROM CUSTOMER c
> RIGHT OUTER JOIN ORDERS o
> ON (c.ID = o0.C_ID);

Stage-Stage-3: HDFS Read: 162 HDFS Write: 0 SUCCESS
CPU Time Spent: 0 msec

Fatema 1200
Fatema 3400
Rohan 2150
Chatur 3420
ime taken: 18.488 seconds, Fetched: 4 row(s)

~.com

References

Data Warehouse and Query Language for Hadoop

Jason Rutherglen,
Dean Wampler &

O'REILLY* Edward Capriolo

d\\ tusharkute

| 'com

>
v

-

- amuARRY

Community Experience Distilled

Apache Hive Essentials

PN BN

Thank you

This presentation is created using LibreOffice Impress 4.2.8.2, can be used freely as per GNU General Public License

Web Resources Blogs
http://mitu.co.in http://digitallocha.blogspot.in
http://tusharkute.com http://kyamputar.blogspot.in

tushar@tusharkute.com

http://digitallocha.blogspot.in/

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

