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Let’s go with an example...

• Sameer and Ajay are traveling in the car ... but the 
speedometer is broken.

• Ajay: "Hey Sameer! How fast are we going now?"
• Sameer: Wait a minute ...Well in the last minute we 

went 1.2 km, so we are going... 1.2 km per minute x 
60 minutes in an hour = 72 km/h

• Ajay: "No, Sameer! Not our average for the last 
minute, or even the last second, I want to know our 
speed RIGHT NOW."

• Sameer: "OK, let us measure it up here ... at this 
road sign... NOW!"



Let’s go with an example...

• "OK, we were AT the sign for zero seconds, and the 
distance was ... zero meters!"

• The speed is 0m / 0s = 0/0 = I Don't Know!

• "I can't calculate it, Ajay! I need to know some distance 
over some time, and you are saying the time should be 
zero? Can't be done."



Let’s go with an example...

• That is pretty amazing ... you'd think it is easy to 
work out the speed of a car at any point in time, 
but it isn't.

• Even the speedometer of a car just shows us an 
average of how fast we were going for the last 
(very short) amount of time.



How About Getting Real Close

• But our story is not finished yet!

• Sameer and Ajay get out of the car, 
because they have arrived on 
location. Sameer is about to do a 
stunt:

• Sameer will do a jump off a 20 m 
building.

• Ajay, as photographer, asks: "How 
fast will you be falling after 1 
second?"



How About Getting Real Close

• Sam uses this simplified formula to find the 
distance fallen:

d = 5t2

    d = distance fallen, in meters

    t = time from jump, in seconds

• (Note: the formula is a simpler version of how fast 
things fall under gravity: d = ½gt2)

• Example: at 1 second Sameer has fallen

d = 5t2 = 5 × 12 = 5 m



How About Getting Real Close

• But how fast is that? Speed is distance over time:

• So at 1 second:

• "BUT", says Ajay, "again that is an average speed, 
since you started the jump, ... I want to know the 
speed at exactly 1 second, so I can set up the 
camera properly."



How About Getting Real Close

• "BUT", says Ajay, "again that is an average speed, 
since you started the jump, ... I want to know the 
speed at exactly 1 second, so I can set up the 
camera properly."

 

• Well ... at exactly 1 second the speed is:



How About Getting Real Close

• So again Sameer has a problem.

• Think about it ... how do we figure out a speed at 
an exact instant in time?

• What is the distance? What is the time difference?

• They are both zero, giving us nothing to calculate 
with!



How About Getting Real Close

• But Sam has an idea ... invent a time so short it 
won't matter.

• Sam won't even give it a value, and will just call it 
"Δt" (called "delta t").

• So Sam works out the difference in distance 
between t and t+Δt



How About Getting Real Close

• At 1 second Sam has fallen

5t2 = 5 × (1)2 = 5 m

• At (1+Δt) seconds Sam has fallen

5t2 = 5 × (1+Δt)2 m

• We can expand (1+Δt)2:

(1+Δt)2= (1+Δt)(1+Δt)

 = 1 + 2Δt + (Δt)2

• So at (1+Δt) seconds Sam has fallen

d= 5 × (1+2Δt+(Δt)2) m

d= 5 + 10Δt + 5(Δt)2 m



How About Getting Real Close

• In Summary:

At 1 second:d = 5 m

At (1+Δt) seconds:d = 5 + 
10Δt + 5(Δt)2 m

• So between 1 second and 
(1+Δt) seconds we get:

Change in d= 5 + 10Δt + 
5(Δt)2 − 5 m



How About Getting Real Close

• Change in distance over time:

• So the speed is 10 + 5Δt m/s, and Sam thinks about 
that Δt value ... he wants Δt to be so small it won't 
matter ... so he imagines it shrinking towards zero 
and he gets:

Speed = 10 m/s



Finally 

• Wow! Sam got an answer!

• Sameer: "I will be falling at exactly 10 m/s"

• Ajay: "I thought you said you couldn't calculate it?"

• Sameer: "That was before I used Calculus!"



What is calculus?

• Calculus is a branch of mathematics that involves the 
study of rates of change. 

• Before calculus was invented, all math was static: It 
could only help calculate objects that were perfectly 
still. 

• But the universe is constantly moving and changing. 
No objects—from the stars in space to subatomic 
particles or cells in the body—are always at rest. 
Indeed, just about everything in the universe is 
constantly moving. 

• Calculus helped to determine how particles, stars, and 
matter actually move and change in real time.



What is calculus?

• Calculus is the study of rates of change.

• Gottfried Leibniz and Isaac Newton, 17th-century 
mathematicians, both invented calculus 
independently. Newton invented it first, but 
Leibniz created the notations that mathematicians 
use today.

• There are two types of calculus: Differential 
calculus determines the rate of change of a 
quantity, while integral calculus finds the quantity 
where the rate of change is known.



What is calculus?

• The word Calculus comes from Latin meaning 
"small stone".
– Differential Calculus cuts something into small 

pieces to find how it changes.

– Integral Calculus joins (integrates) the small 
pieces together to find how much there is.

• Differential Calculus and Integral Calculus are 
like inverses of each other, similar to how 
multiplication and division are inverses



Derivative 

• Let’s say that we increase x by a small amount, which 
we denote dx. And assume that this change in dx 
increases y by the quantity dy.

• We can visualise this as a right-angled triangle in which 
x forms the base and y the height. 



Derivative 

• If we add dx to x, it will cause an increase in y by dy. 
This corresponding change in dy can be described as a 
ratio.

• The expression dy describes a rise in y, whereas dx 
describes the run (the change in x by dx), which is why 
this ratio is known as the “rise over run”. In geometric 
terms, “rise over run” is the slope of our hypotenuse.



Derivative 

• Well, in this case, our hypotenuse is just a straight line. 
The ratio between dy and dx is the same at every 
point. It is also equivalent to the ratio of y to x.

• But what do we do if instead of the hypotenuse in the 
previous image, we need to find the slope of a non-
linear graph like this one?



Derivative 

• Now the slope and therefore our “rise over run” 
changes constantly as you move along the line. In 
other words, the slope itself becomes a non-linear 
graph (plotted in blue). 



Derivative 

• Following the origin, the green graph slowly picks up 
steepness, which also results in a gradual increase in 
steepness in the blue graph.

• In the real world, the green graph could model the 
deceleration of a car until it comes to a halt at a traffic 
light. After the traffic light has turned green, it slowly 
starts to accelerate again. 

• So the green graph captures the actual change in 
speed while the blue graph records the rate of change 
in speed at every point in time.



What is Derivative ?

• It should be obvious by now, that we cannot capture 
the slope of the green graph in a simple slope of y over 
x.

• To determine the slope of the green graph, we would 
have to create an infinite number of infinitely small 
right-angled triangles at every point along the line. 

• Now this infinitely small ratio you obtain at every one 
of these triangles is known as the differential and it is 
expressed as



What is Derivative ?

• Here d stands for delta. 

• It is known as the differential, and the blue graph that 
captures the rate of change at every point on the 
green graph is known as the derivative of the green 
graph. 

• Of course, x and y have to be somehow related to be 
able to obtain this ratio. We can therefore express the 
derivative as a function itself.



How do we got this function?

• Remember in a graph y is usually expressed as a 
function of x. Our green graph can be expressed as

y=x3



How do we got this function?

• More formally we would say:

f(x)=x3

• So f(x) is basically a different expression for y in this 
case. 

• You could create a right angled triangle along the 
graph of f(x), from any point (x, f(x)) to another point 
(x + dx, f(x + dx)).



How do we got this function?



Rise over run formula

• Accordingly, you would arrive at the slope of this 
triangle by the following calculation.

• Since the slope is changing continuously in a non-
linear graph, we need to make the triangle as small 
as possible, in fact infinitely small, to arrive at the 
correct slope at that point. 

• As we cannot really calculate the slope of an 
infinitely small triangle, we can only approximate it 
by getting x as close to zero as possible.



Partial Derivative

• Many real-life problems in areas such as 
physics, mechanical engineering, data 
science, etc., can be described as 
functions of more than one 
independent variable. 

• How can you know how the change in 
one particular variable affects the 
system described by your function?

• This is where partial derivatives come 
in.

• For instance, the volume of a cylinder 
can be described as a function of its 
height h and its radius r.

V=πr2h



Partial Derivative

• Suppose you need to describe how the volume 
changes in response to varying just the height 
while keeping the radius constant. 

• To achieve this, you would differentiate the 
function describing the volume just with respect to 
h, treating everything else, including r, as a 
constant. This gives you the following expression.

V =πr′ 2



Partial Derivative

• But wait, isn’t this the formula for the area of a 
circle? Indeed, it is. 

• That makes perfect sense. If you increase h by an 
infinitesimally small amount, it is like stacking a 
circle on top of the cylinder.



Partial Derivative

• The area of the circle is equivalent to the partial derivative 
of V with respect to h. Formally we would say.

• Note that ∂ is the partial derivative symbol. You use it 
instead of d when you are differentiating a multivariate 
function with respect to one variable.

• If we wanted to find out how V changes if we only increased 
or decreased r, we would take the partial derivative of V 
with respect to r.



What we know?

• the derivative is nothing but the slope of a 
function at a particular point. If we take the 
multivariate function

f(x,y)=x2+3y

• The derivative with respect to one variable x 
will give us the slope along the x dimension.



What we know?



Vector 

• Since x^2 is an exponential term, the slope 
becomes steeper as we move away from the 
origin.

• Taking the partial derivative with respect to y 
gives us the slope along the y dimension.

3y is a linear term, therefore the slope 
along the y axis remains constant.



Jacobian Row Vector 

• What about the total derivative with respect to x and y? 
Since we are differentiating with respect to x and y, it is the 
slope along both dimensions. We can express this as a row 
vector.

• This is known as the Jacobian matrix. In this simple case with 
a scalar-valued function, the Jacobian is a vector of partial 
derivatives with respect to the variables of that function. 

• The length of the vector is equivalent to the number of 
independent variables in the function. 



Jacobian Matrix

• The Jacobian of a function of real numbers is a vector. We 
can expand the definition of the Jacobian to vector-valued 
functions. 

• Our function vector has m entries. The resulting Jacobian 
will be an m×n matrix, where n is the number of partial 
derivatives. 

• Each row m in the matrix contains the partial derivatives 
corresponding to the equivalent row m in the function 
vector.



What is use of Jacobian?

• We can use the Jacobian matrix to transform 
from one vector space to another. 

• Furthermore, if the matrix is square, we can 
obtain the determinant. 

• The value of the Jacobian determinant gives us 
the factor by which the area or volume 
described by our function changes when we 
perform the transformation.



Hessian Matrix

• Suppose you are walking around in the hills at 
night and you would like to find the highest peak. 

• You can’t see further than a few meters because 
it is dark. If you followed the direction of the 
highest slope, you’d eventually end up on a 
saddle or on a hill, but it might not be the highest 
point. 

• The Hessian gives you a way to determine 
whether the point you are standing on is, in fact, 
the highest hill.



Hessian Matrix

• The Hessian matrix is a matrix of the second-order 
partial derivatives of a function. 

• The easiest way to get to a Hessian is to first calculate 
the Jacobian and take the derivative of each entry of 
the Jacobian with respect to each variable. 

• This implies that if you take a function of n variables, 
the Jacobian will be a row vector of n entries. The 
Hessian will be an n×n matrix.



Hessian Matrix

• f you have a vector-valued function with n 
variables and m vector entries, the Jacobian will 
be m×n, while the Hessian will be m×n×n .

• Let’s do an example to clarify this starting with the 
following function.

f(x,y)=3x2+y2



Hessian Matrix

• We first calculate the Jacobian.

J=[6x   2y ]

• Now we calculate the terms of the Hessian.



Hessian Matrix

• Our Hessian is a diagonal matrix of constants. 
That makes sense since we had to differentiate 
twice and therefore good rid of all the 
exponents. 

• We can easily calculate the determinant of the 
Hessian.

det(H)=6×2−0×0=12



Hessian Matrix

• What can we infer from this information?
– If the first term in the upper left corner of our 

Hessian matrix is a positive number, we are 
dealing with a minimum.

– If the first term in the upper left corner of our 
Hessian matrix is negative, we are dealing with a 
maximum.

– In both cases, the determinant has to be positive
– If the determinant is negative, the matrix is non-

definite. In this case, we might have arrived at a 
saddle point.



Multivariable Chain Rule

• Remember that the chain rule helps us 
differentiate nested functions.

• If we have a function f of multiple variables x 
and y, which are themselves functions of 
another variable r, we can calculate the total 
differential.



Multivariable Chain Rule

• As we’ve seen when constructing the Jacobian 
matrix, then treating x(r) and y(r) as disparate 
functions, we can write them together in a 
vector. 

• Note that I am writing v with this tiny arrow on 
top to distinguish it from the other non-vector 
variables.



Multivariable Chain Rule

• Accordingly, we can also write the derivatives as vectors.

• Now we can write the total derivative of f with respect to 
the nested variable r as a dot product of the two vectors.



Example:

• Let’s first calculate the partial derivatives of f with 
respect to x, y, and the derivatives for x, y with 
respect to r.



Example:

Let’s write them in vector format as a dot product and 
multiply out.

Alternatively, we can eliminate x and y from the start 
by substituting the appropriate terms of r.

Now we can simply differentiate, which gives us the 
following.



Summary 

• It resolves to the same term as when we 
applied the chain rule. 

• In this simple case, it is probably faster to use 
the second method. 

• But once you are dealing with many nested 
variables, the chain rule is a much better and 
more scalable approach.



tushar@tusharkute.com

      Thank you
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