Calculus

Tushar B. Kute, http://tusharkute.com

Let's go with an example...

- Sameer and Ajay are traveling in the car ... but the speedometer is broken.
- Ajay: "Hey Sameer! How fast are we going now?"
- Sameer: Wait a minute ...Well in the last minute we went 1.2 km , so we are going... 1.2 km per minute x 60 minutes in an hour $=72 \mathrm{~km} / \mathrm{h}$
- Ajay: "No, Sameer! Not our average for the last minute, or even the last second, I want to know our speed RIGHT NOW."
- Sameer: "OK, let us measure it up here ... at this road sign... NOW!"

Let's go with an example...

- "OK, we were AT the sign for zero seconds, and the distance was ... zero meters!"
- The speed is $0 \mathrm{~m} / 0 \mathrm{~s}=0 / 0=\mathrm{I}$ Don't Know!
- "I can't calculate it, Ajay! I need to know some distance over some time, and you are saying the time should be zero? Can't be done."

Let's go with an example...

- That is pretty amazing ... you'd think it is easy to work out the speed of a car at any point in time, but it isn't.
- Even the speedometer of a car just shows us an average of how fast we were going for the last (very short) amount of time.

How About Getting Real Close

- But our story is not finished yet!
- Sameer and Ajay get out of the car, because they have arrived on location. Sameer is about to do a stunt:
- Sameer will do a jump off a 20 m building.
- Ajay, as photographer, asks: "How
 fast will you be falling after 1 second?"

How About Getting Real Close

- Sam uses this simplified formula to find the distance fallen:
$d=5 t^{2}$
d = distance fallen, in meters
$\mathrm{t}=$ time from jump, in seconds
- (Note: the formula is a simpler version of how fast things fall under gravity: $d=1 / 2 g t^{2}$)
- Example: at 1 second Sameer has fallen
$\mathrm{d}=5 \mathrm{t}^{2}=5 \times 12=5 \mathrm{~m}$

How About Getting Real Close

- But how fast is that? Speed is distance over time:

$$
\text { Speed }=\frac{\text { distance }}{\text { time }}
$$

- So at 1 second:

$$
\text { Speed }=\frac{5 \mathrm{~m}}{1 \text { second }}=5 \mathrm{~m} / \mathrm{s}
$$

- "BUT", says Ajay, "again that is an average speed, since you started the jump, ... I want to know the speed at exactly 1 second, so I can set up the camera properly."

How About Getting Real Close

- "BUT", says Ajay, "again that is an average speed, since you started the jump, ... I want to know the speed at exactly 1 second, so I can set up the camera properly."

- Well ... at exactly 1 second the speed is:

$$
\text { Speed }=\frac{5-5 m}{1-1 \mathrm{~s}}=\frac{0 \mathrm{~m}}{0 \mathrm{~s}}=? ? ?
$$

How About Getting Real Close

- So again Sameer has a problem.
- Think about it ... how do we figure out a speed at an exact instant in time?
- What is the distance? What is the time difference?
- They are both zero, giving us nothing to calculate with!

How About Getting Real Close

- But Sam has an idea ... invent a time so short it won't matter.
- Sam won't even give it a value, and will just call it " Δ t" (called "delta t").
- So Sam works out the difference in distance between t and $t+\Delta t$

How About Getting Real Close

- At 1 second Sam has fallen
$5 t^{2}=5 \times(1)^{2}=5 \mathrm{~m}$
- At $(1+\Delta t)$ seconds Sam has fallen

$$
5 t^{2}=5 \times(1+\Delta t)^{2} \mathrm{~m}
$$

- We can expand $(1+\Delta t)^{2}$:

$$
\begin{aligned}
& (1+\Delta \mathrm{t})^{2}=(1+\Delta \mathrm{t})(1+\Delta \mathrm{t}) \\
& =1+2 \Delta \mathrm{t}+(\Delta \mathrm{t})^{2}
\end{aligned}
$$

- So at $(1+\Delta t)$ seconds Sam has fallen

$$
\begin{aligned}
& d=5 \times\left(1+2 \Delta t+(\Delta t)^{2}\right) m \\
& d=5+10 \Delta t+5(\Delta t)^{2} m
\end{aligned}
$$

How About Getting Real Close

- In Summary:

At 1 second:d $=5 \mathrm{~m}$
At $(1+\Delta t)$ seconds: $=5+$ $10 \Delta t+5(\Delta t)^{2} m$

- So between 1 second and $(1+\Delta t)$ seconds we get:
Change in $d=5+10 \Delta t+$ $5(\Delta t)^{2}-5 m$

How About Getting Real Close

- Change in distance over time:

$$
\begin{gathered}
\text { Speed } \begin{aligned}
= & \frac{5+10 \Delta t+5(\Delta t)^{2}-5 \mathrm{~m}}{\Delta t \mathrm{~s}} \\
& =\frac{10 \Delta \mathrm{t}+5(\Delta \mathrm{t})^{2} \mathrm{~m}}{\Delta \mathrm{t} \mathrm{~s}} \\
& =10+5 \Delta \mathrm{t} \mathrm{~m} / \mathrm{s}
\end{aligned}
\end{gathered}
$$

- So the speed is $10+5 \Delta t \mathrm{~m} / \mathrm{s}$, and Sam thinks about that Δt value ... he wants Δt to be so small it won't matter ... so he imagines it shrinking towards zero and he gets:

$$
\text { Speed }=10 \mathrm{~m} / \mathrm{s}
$$

Finally

- Wow! Sam got an answer!
- Sameer: "I will be falling at exactly $10 \mathrm{~m} / \mathrm{s}$ "
- Ajay: "I thought you said you couldn't calculate it?"
- Sameer: "That was before I used Calculus!"

What is calculus?

- Calculus is a branch of mathematics that involves the study of rates of change.
- Before calculus was invented, all math was static: It could only help calculate objects that were perfectly still.
- But the universe is constantly moving and changing. No objects-from the stars in space to subatomic particles or cells in the body-are always at rest. Indeed, just about everything in the universe is constantly moving.
- Calculus helped to determine how particles, stars, and matter actually move and change in real time.

What is calculus?

- Calculus is the study of rates of change.
- Gottfried Leibniz and Isaac Newton, 17th-century mathematicians, both invented calculus independently. Newton invented it first, but Leibniz created the notations that mathematicians use today.
- There are two types of calculus: Differential calculus determines the rate of change of a quantity, while integral calculus finds the quantity where the rate of change is known.

What is calculus?

- The word Calculus comes from Latin meaning "small stone".
- Differential Calculus cuts something into small pieces to find how it changes.
- Integral Calculus joins (integrates) the small pieces together to find how much there is.
- Differential Calculus and Integral Calculus are like inverses of each other, similar to how multiplication and division are inverses

Derivative

- Let's say that we increase x by a small amount, which we denote dx . And assume that this change in dx increases y by the quantity dy.
- We can visualise this as a right-angled triangle in which x forms the base and y the height.

Derivative

- If we add $d x$ to x, it will cause an increase in y by dy. This corresponding change in dy can be described as a ratio.

- The expression dy describes a rise in y, whereas $d x$ describes the run (the change in x by dx), which is why this ratio is known as the "rise over run". In geometric terms, "rise over run" is the slope of our hypotenuse.

Derivative

- Well, in this case, our hypotenuse is just a straight line. The ratio between dy and dx is the same at every point. It is also equivalent to the ratio of y to x.
- But what do we do if instead of the hypotenuse in the previous image, we need to find the slope of a nonlinear graph like this one?

Derivative

- Now the slope and therefore our "rise over run" changes constantly as you move along the line. In other words, the slope itself becomes a non-linear graph (plotted in blue).

Derivative

- Following the origin, the green graph slowly picks up steepness, which also results in a gradual increase in steepness in the blue graph.
- In the real world, the green graph could model the deceleration of a car until it comes to a halt at a traffic light. After the traffic light has turned green, it slowly starts to accelerate again.
- So the green graph captures the actual change in speed while the blue graph records the rate of change in speed at every point in time.

What is Derivative?

- It should be obvious by now, that we cannot capture the slope of the green graph in a simple slope of y over x.
- To determine the slope of the green graph, we would have to create an infinite number of infinitely small right-angled triangles at every point along the line.
- Now this infinitely small ratio you obtain at every one of these triangles is known as the differential and it is expressed as

What is Derivative?

- Неге d stands for delta.
- It is known as the differential, and the blue graph that captures the rate of change at every point on the green graph is known as the derivative of the green graph.
- Of course, x and y have to be somehow related to be able to obtain this ratio. We can therefore express the derivative as a function itself.

How do we got this function?

- Remember in a graph y is usually expressed as a function of x. Our green graph can be expressed as $y=x^{3}$

How do we got this function?

- More formally we would say:
$f(x)=x^{3}$
- So $f(x)$ is basically a different expression for y in this case.
- You could create a right angled triangle along the graph of $f(x)$, from any point ($x, f(x)$) to another point $(x+d x, f(x+d x))$.

How do we got this function?

Rise over run formula

- Accordingly, you would arrive at the slope of this triangle by the following calculation.

$$
\frac{r i s e}{r u n}=\frac{d y}{d x}=\frac{f(x+d x)-f(x)}{(x+d x)-x}=\frac{f(x+d x)-f(x)}{d x}
$$

- Since the slope is changing continuously in a nonlinear graph, we need to make the triangle as small as possible, in fact infinitely small, to arrive at the correct slope at that point.
- As we cannot really calculate the slope of an infinitely small triangle, we can only approximate it by getting x as close to zero as possible.

Partial Derivative

- Many real-life problems in areas such as physics, mechanical engineering, data science, etc., can be described as functions of more than one independent variable.
- How can you know how the change in one particular variable affects the system described by your function?
- This is where partial derivatives come in.
- For instance, the volume of a cylinder can be described as a function of its
 height h and its radius r.
$\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$

Partial Derivative

- Suppose you need to describe how the volume changes in response to varying just the height while keeping the radius constant.
- To achieve this, you would differentiate the function describing the volume just with respect to h, treating everything else, including r, as a constant. This gives you the following expression.

$$
V^{\prime}=\pi \Gamma^{2}
$$

Partial Derivative

- But wait, isn't this the formula for the area of a circle? Indeed, it is.
- That makes perfect sense. If you increase h by an infinitesimally small amount, it is like stacking a circle on top of the cylinder.

Partial Derivative

- The area of the circle is equivalent to the partial derivative of V with respect to h. Formallv we would say.

$$
\frac{\partial V}{\partial h}=\pi r^{2}
$$

- Note that ∂ is the partial derivative symbol. You use it instead of d when you are differentiating a multivariate function with respect to one variable.
- If we wanted to find out how V changes if we only increased or decreased r, we would take the partial derivative of V with respect to r.

$$
\begin{gathered}
V=\pi r^{2} h \\
\frac{\partial V}{\partial r}=2 \pi r h
\end{gathered}
$$

What we know?

- the derivative is nothing but the slope of a function at a particular point. If we take the multivariate function

$$
f(x, y)=x^{2}+3 y
$$

- The derivative with respect to one variable x will give us the slope along the x dimension.

$$
\frac{\partial f(x, y)}{\partial x}=2 x
$$

What we know?

Vector

- Since $x^{\wedge} 2$ is an exponential term, the slope becomes steeper as we move away from the origin.
- Taking the partial derivative with respect to y gives us the slope along the y dimension.

$$
\frac{\partial f(x, y)}{\partial y}=3
$$

$3 y$ is a linear term, therefore the slope along the y axis remains constant.

Jacobian Row Vector

- What about the total derivative with respect to x and y ? Since we are differentiating with respect to x and y, it is the slope along both dimensions. We can express this as a row vector.

$$
d f(x, y)=\left[\begin{array}{ll}
\frac{\partial f(x, y)}{\partial x} & \frac{\partial f(x, y)}{\partial y}
\end{array}\right]
$$

- This is known as the Jacobian matrix. In this simple case with a scalar-valued function, the Jacobian is a vector of partial derivatives with respect to the variables of that function.
- The length of the vector is equivalent to the number of independent variables in the function.

Jacobian Matrix

- The Jacobian of a function of real numbers is a vector. We can expand the definition of the Jacobian to vector-valued functions.

$$
f(x)=\left[\begin{array}{c}
f_{1}(x) \\
\ldots \\
f_{m}(x)
\end{array}\right]
$$

- Our function vector has m entries. The resulting Jacobian will be an $m \times n$ matrix, where n is the number of partial derivatives.
- Each row m in the matrix contains the partial derivatives corresponding to the equivalent row m in the function vector.

$$
\frac{d f(x)}{d x}=\left[\begin{array}{ccc}
\frac{\partial f_{1}(x)}{\partial x_{1}} & \ldots & \frac{\partial f_{1}(x)}{\partial x_{n}} \\
\cdots & & \\
\frac{\partial f_{m}(x)}{\partial x_{1}} & \ldots & \frac{\partial f_{m}(x)}{\partial x_{n}}
\end{array}\right]
$$

What is use of Jacobian?

- We can use the Jacobian matrix to transform from one vector space to another.
- Furthermore, if the matrix is square, we can obtain the determinant.
- The value of the Jacobian determinant gives us the factor by which the area or volume described by our function changes when we perform the transformation.

Hessian Matrix

- Suppose you are walking around in the hills at night and you would like to find the highest peak.
- You can't see further than a few meters because it is dark. If you followed the direction of the highest slope, you'd eventually end up on a saddle or on a hill, but it might not be the highest point.
- The Hessian gives you a way to determine whether the point you are standing on is, in fact, the highest hill.

Hessian Matrix

- The Hessian matrix is a matrix of the second-order partial derivatives of a function.

$$
d f(x, y)=\left[\begin{array}{ll}
\frac{\partial^{2} f(x, y)}{\partial x^{2}} & \frac{\partial^{2} f(x, y)}{\partial \partial^{2} y} \\
\frac{\partial^{2} f(x, y)}{\partial x y} & \frac{\partial^{2} f(x, y)}{\partial y^{2}}
\end{array}\right]
$$

- The easiest way to get to a Hessian is to first calculate the Jacobian and take the derivative of each entry of the Jacobian with respect to each variable.
- This implies that if you take a function of n variables, the Jacobian will be a row vector of n entries. The Hessian will be an $n \times n$ matrix.

Hessian Matrix

- fyou have a vector-valued function with n variables and m vector entries, the Jacobian will be $m \times n$, while the Hessian will be $m \times n \times n$.
- Let's do an example to clarify this starting with the following function. $f(x, y)=3 x^{2}+y^{2}$

Hessian Matrix

- We first calculate the Jacobian.
$J=[6 x 2 y]$
- Now we calculate the terms of the Hessian.

$$
\begin{gathered}
\frac{\partial 6 x}{\partial x}=6 \text { and } \frac{\partial 2 y}{\partial x}=0 \text { and } \frac{\partial 6 x}{\partial y}=0 \text { and } \frac{\partial 2 y}{\partial y}=2 \\
H=\left[\begin{array}{ll}
6 & 0 \\
0 & 2
\end{array}\right]
\end{gathered}
$$

Hessian Matrix

Our Hessian is a diagonal matrix of constants. That makes sense since we had to differentiate twice and therefore good rid of all the exponents.

- We can easily calculate the determinant of the Hessian. $\operatorname{det}(H)=6 \times 2-0 \times 0=12$

Hessian Matrix

- What can we infer from this information?
- If the first term in the upper left corner of our Hessian matrix is a positive number, we are dealing with a minimum.
- If the first term in the upper left corner of our Hessian matrix is negative, we are dealing with a maximum.
- In both cases, the determinant has to be positive
- If the determinant is negative, the matrix is nondefinite. In this case, we might have arrived at a saddle point.

Multivariable Chain Rule

- Remember that the chain rule helps us differentiate nested functions.
- If we have a function f of multiple variables x and y, which are themselves functions of another variable r, we can calculate the total differential.

$$
\frac{d}{d r} f(x(r), y(r))=\frac{\partial f}{\partial x} \frac{d x}{d r}+\frac{\partial f}{\partial y} \frac{d y}{d r}
$$

Multivariable Chain Rule

- As we've seen when constructing the Jacobian matrix, then treating $x(r)$ and $y(r)$ as disparate functions, we can write them together in a vector.

$$
\vec{v}=\left[\begin{array}{l}
x(r) \\
y(r)
\end{array}\right]
$$

- Note that I am writing v with this tiny arrow on top to distinguish it from the other non-vector variables.

Multivariable Chain Rule

- Accordingly, we can also write the derivatives as vectors.

Partial outer derivatives of f with respect to x and y.

Nested derivatives of x and y with respect to r.

$$
\frac{\partial f}{\partial(x, y)}=\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right]
$$

$$
\frac{d(x, y)}{d r}=\left[\begin{array}{l}
\frac{d x}{d r} \\
\frac{d y}{d r}
\end{array}\right]
$$

- Now we can write the total derivative of f with respect to the nested variable ras a dot product of the two vectors.

$$
\frac{d f}{d r}=\frac{\partial f}{\partial(x, y)} \frac{d(x, y)}{d r}=\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{d x}{d r} \\
\frac{d y}{d r}
\end{array}\right]
$$

Example:

$$
\begin{gathered}
f(x, y)=2 x^{2}+3 y \\
x(r)=r^{2}-1 \\
y(r)=2 r^{2}+3
\end{gathered}
$$

Let's first calculate the partial derivatives of f with respect to x, y, and the derivatives for x, y with respect to r.

$$
\begin{aligned}
\frac{\partial f}{\partial x}=4 x & =4 r^{2}-4 \\
\frac{\partial f}{\partial y} & =3 \\
\frac{d x}{d r} & =2 r \\
\frac{d y}{d r} & =4 r
\end{aligned}
$$

Example:

Let's write them in vector format as a dot product and multiply out.

$$
\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right] \cdot\left[\begin{array}{l}
\frac{d x}{d r} \\
\frac{d y}{d r}
\end{array}\right]=\left[\begin{array}{c}
4 r^{2}-4 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
2 r \\
4 r
\end{array}\right]=8 r^{3}+4 r
$$

Alternatively, we can eliminate x and y from the start by substituting the appropriate terms of r.

$$
\begin{aligned}
& f(r)=2\left(r^{2}-1\right)^{2}+3\left(2 r^{2}+3\right) \\
& \quad=2 r^{4}-4 r^{2}+2+6 r^{2}+6
\end{aligned}
$$

Now we can simply differentiate, which gives us the following.

$$
\frac{d f}{d r}=8 r^{3}+4 r
$$

Summary

- It resolves to the same term as when we applied the chain rule.
- In this simple case, it is probably faster to use the second method.
- But once you are dealing with many nested variables, the chain rule is a much better and more scalable approach.

Thank you

This presentation is created using LibreOffice Impress 5.1.6.2, can be used freely as per GNU General Public License
@mitu_skillologies

/mITuSkillologies

@mitu_group

/company/mitu- MITUSkillologies skillologies

Web Resources
https://mitu.co.in
http://tusharkute.com
contact@mitu.co.in tushar@tusharkute.com

