
Regression

Tushar B. Kute,
http://tusharkute.com

Regression?

• Regression analysis is a statistical method that
helps us to analyse and understand the
relationship between two or more variables of
interest.

• The process that is adapted to perform
regression analysis helps to understand which
factors are important, which factors can be
ignored and how they are influencing each
other.

Regression?

• Introduction, types of regression. Simple
regression- Types, Making predictions, Cost
function, Gradient descent, Training, Model
evaluation.

• Multivariable regression : Growing complexity,
Normalization, Making predictions, Initialize
weights, Cost function, Gradient descent,
Simplifying with matrices, Bias term, Model
evaluation
Taken From-
https://ml-cheatsheet.readthedocs.io/en/latest/linear_regression.html

Regression?

• For the regression analysis is be a successful
method, we understand the following terms:
– Dependent Variable: This is the variable that

we are trying to understand or forecast.
– Independent Variable: These are factors that

influence the analysis or target variable and
provide us with information regarding the
relationship of the variables with the target
variable.

Example:

Example:

Regression

• In regression, we normally have one dependent variable
and one or more independent variables.

• Here we try to “regress” the value of dependent
variable “Y” with the help of the independent variables.

• In other words, we are trying to understand, how does
the value of ‘Y’ change w.r.t change in ‘X’.

Uses of Regression

• Regression analysis is used for prediction and forecasting. This
has a substantial overlap to the field of machine learning. This
statistical method is used across different industries such as,
– Financial Industry- Understand the trend in the stock prices,

forecast the prices, evaluate risks in the insurance domain
– Marketing- Understand the effectiveness of market

campaigns, forecast pricing and sales of the product.
– Manufacturing- Evaluate the relationship of variables that

determine to define a better engine to provide better
performance

– Medicine- Forecast the different combination of medicines
to prepare generic medicines for diseases.

Terminologies

• Outliers
– Suppose there is an observation in the

dataset that has a very high or very low value
as compared to the other observations in the
data, i.e. it does not belong to the population,
such an observation is called an outlier.

– In simple words, it is an extreme value. An
outlier is a problem because many times it
hampers the results we get.

Terminologies

• Multicollinearity
– When the independent variables are highly

correlated to each other, then the variables are
said to be multicollinear.

– Many types of regression techniques assume
multicollinearity should not be present in the
dataset.

– It is because it causes problems in ranking
variables based on its importance, or it makes the
job difficult in selecting the most important
independent variable.

Terminologies

• Heteroscedasticity
–When the variation between the target variable and the

independent variable is not constant, it is called
heteroscedasticity.

– Example-As one’s income increases, the variability of
food consumption will increase.

– A poorer person will spend a rather constant amount by
always eating inexpensive food; a wealthier person may
occasionally buy inexpensive food and at other times,
eat expensive meals.

– Those with higher incomes display a greater variability of
food consumption.

Terminologies

• When we use unnecessary explanatory
variables, it might lead to overfitting.

• Overfitting means that our algorithm works
well on the training set but is unable to perform
better on the test sets. It is also known as a
problem of high variance.

• When our algorithm works so poorly that it is
unable to fit even a training set well, then it is
said to underfit the data. It is also known as a
problem of high bias.

Terminologies

Types of Regression

• Linear Regression

• Multiple Regression

• Logistic Regression

• Polynomial Regression

• Regularized Models
– Ridge Regression
– Lasso Regression
– ElasticNet Regression

• Outlier Based Model
– RANSAC

Linear Regression

• The simplest of all regression types is Linear Regression
where it tries to establish relationships between
Independent and Dependent variables.

• The Dependent variable considered here is always a
continuous variable.

• Linear Regression is a predictive model used for finding
the linear relationship between a dependent variable
and one or more independent variables.

Linear Regression

• Here, ‘Y’ is our dependent variable, which is a
continuous numerical and we are trying to understand
how does ‘Y’ change with ‘X’.

• So, if we are supposed to answer, the above question of
“What will be the GRE score of the student, if his CCGPA
is 8.32?” our go to option should be linear regression.

Simple Linear Regression

• As the model is used to predict the dependent
variable, the relationship between the variables can be
written in the below format.

Yi = β0 + β1Xi +εi

• Where,

– Yi – Dependent variable

– β0 — Intercept

– β1 – Slope Coefficient

– Xi – Independent Variable

– εi – Random Error Term

Simple Linear Regression

• The main factor that is considered as part of Regression
analysis is understanding the variance between the variables.
For understanding the variance, we need to understand the
measures of variation.
– SST = total sum of squares (Total Variation)
• Measures the variation of the Y i values around their

mean Y
– SSR = regression sum of squares (Explained Variation)
• Variation attributable to the relationship between X and

Y
– SSE = error sum of squares (Unexplained Variation)
• Variation in Y attributable to factors other than X

Polynomial Regression

• This type of regression technique is used to model
nonlinear equations by taking polynomial functions
of independent variables.

• In the figure given below, you can see the red curve
fits the data better than the green curve.

• Hence in the situations where the relationship
between the dependent and independent variable
seems to be non-linear, we can deploy Polynomial
Regression Models.

Polynomial Regression

Logistic Regression

• Logistic Regression is also known as Logit, Maximum-Entropy
classifier is a supervised learning method for classification. It
establishes a relation between dependent class variables and
independent variables using regression.

• The dependent variable is categorical i.e. it can take only integral
values representing different classes. The probabilities
describing the possible outcomes of a query point are modelled
using a logistic function.

• This model belongs to a family of discriminative classifiers. They
rely on attributes which discriminate the classes well. This model
is used when we have 2 classes of dependent variables. When
there are more than 2 classes, then we have another regression
method which helps us to predict the target variable better.

Linear Discriminant Analysis (LDA)

• Discriminant Analysis is used for classifying
observations to a class or category based on
predictor (independent) variables of the data.

• Discriminant Analysis creates a model to predict
future observations where the classes are known.

• LDA comes to our rescue in situations when logistic
regression is unstable when

– Classed are well separated

– Data is small

– When we have more than 2 classes

Errors in Linear Regression

Ridge Regression

• A regression model that uses L1 regularization
technique is called Lasso Regression and model
which uses L2 is called Ridge Regression.

• The key difference between these two is the
penalty term.

• Ridge regression adds “squared magnitude” of
coefficient as penalty term to the loss function.
Here the highlighted part represents L2
regularization element.

Ridge Regression – Cost Function

• Here, if lambda is zero then you can imagine we get
back OLS.

• However, if lambda is very large then it will add too
much weight and it will lead to under-fitting.

• Having said that it’s important how lambda is
chosen. This technique works very well to avoid
over-fitting issue.

Lasso Regression – Cost Function

• Lasso Regression (Least Absolute Shrinkage and
Selection Operator) adds “absolute value of
magnitude” of coefficient as penalty term to the
loss function.

• Again, if lambda is zero then we will get back OLS
whereas very large value will make coefficients
zero hence it will under-fit.

Comparing

• The key difference between these techniques is
that Lasso shrinks the less important feature’s
coefficient to zero thus, removing some feature
altogether.

• So, this works well for feature selection in case we
have a huge number of features.

Elastic Net

• Elastic net is a popular type of regularized linear
regression that combines two popular penalties,
specifically the L1 and L2 penalty functions.

• a hyperparameter “alpha” is provided to assign how
much weight is given to each of the L1 and L2 penalties.

• Alpha is a value between 0 and 1 and is used to weight
the contribution of the L1 penalty and one minus the
alpha value is used to weight the L2 penalty.

• elastic_net_penalty = (alpha * l1_penalty) + ((1 – alpha) *
l2_penalty)

Robust Regression

• A common problem with linear regressions is
caused by the presence of outliers.

• An ordinary least square approach will take them
into account and the result (in terms of
coefficients) will be therefore biased.

• In the following figure, there's an example of such a
behavior:

Robust Regression

Well-Posed Learning Problems

• A computer program is said to learn from
experience E with respect to some class of tasks
T and performance measure P, if its
performance at tasks in T, as measured by P,
improves with experience E.

Simple Regression

• Let’s say we are given a dataset with the
following columns (features): how much a
company spends on Radio advertising each year
and its annual Sales in terms of units sold.

• We are trying to develop an equation that will
let us to predict units sold based on how much a
company spends on radio advertising.

• The rows (observations) represent companies.

Simple Regression

Making Predictions

• Our prediction function outputs an estimate of sales given a company’s
radio advertising spend and our current values for Weight and Bias.

Sales=Weight Radio+Bias⋅
• Weight

• the coefficient for the Radio independent variable. In machine
learning we call coefficients weights.

• Radio

• the independent variable. In machine learning we call these variables
features.

• Bias

• the intercept where our line intercepts the y-axis. In machine learning
we can call intercepts bias. Bias offsets all predictions that we make.

Making Predictions

• Our algorithm will try to learn the correct values for
Weight and Bias. By the end of our training, our
equation will approximate the line of best fit.

Cost Function

• The prediction function is nice, but for our purposes
we don’t really need it. What we need is a cost
function so we can start optimizing our weights.

• Let’s use MSE (L2) as our cost function. MSE
measures the average squared difference between
an observation’s actual and predicted values.

• The output is a single number representing the cost,
or score, associated with our current set of weights.
Our goal is to minimize MSE to improve the accuracy
of our model.

Math

• Given our simple linear equation y=mx+b, we
can calculate MSE as:

Code

def cost_function(radio, sales, weight, bias):

 companies = len(radio)

 total_error = 0.0

 for i in range(companies):

 total_error += (sales[i] - (weight*radio[i] + bias))**2

 return total_error / companies

Gradient Descent

• Gradient descent is an iterative optimization
algorithm to find the minimum of a function.
Here that function is our Loss Function.

Understanding Gradient Descent

Example

• Imagine a valley and a person with no sense of
direction who wants to get to the bottom of the
valley.

• He goes down the slope and takes large steps
when the slope is steep and small steps when
the slope is less steep.

• He decides his next position based on his
current position and stops when he gets to the
bottom of the valley which was his goal.

Example

• Let’s try applying gradient descent to m and c
and approach it step by step:
– Initially let m = 0 and c = 0. Let L be our

learning rate. This controls how much the
value of m changes with each step. L could be
a small value like 0.0001 for good accuracy.

– Calculate the partial derivative of the loss
function with respect to m, and plug in the
current values of x, y, m and c in it to obtain
the derivative value D.

Example

• D is the value of the partial derivative with ₘ
respect to m. Similarly lets find the partial
derivative with respect to c, Dc :

Example

Now we update the current value of m and c using
the following equation:

• 4. We repeat this process until our loss function is
a very small value or ideally 0 (which means 0
error or 100% accuracy). The value of m and c that
we are left with now will be the optimum values.

Example

• Now going back to our analogy, m can be considered the
current position of the person. D is equivalent to the steepness
of the slope and L can be the speed with which he moves.

• Now the new value of m that we calculate using the above
equation will be his next position, and L×D will be the size of
the steps he will take.

• When the slope is more steep (D is more) he takes longer steps
and when it is less steep (D is less), he takes smaller steps.
Finally he arrives at the bottom of the valley which corresponds
to our loss = 0.

• Now with the optimum value of m and c our model is ready to
make predictions !

Types

• Batch Gradient Descent

• Stochastic Gradient Descent

• Mini Batch gradient descent

Batch Gradient Descent

• This is a type of gradient descent which processes
all the training examples for each iteration of
gradient descent.

• But if the number of training examples is large,
then batch gradient descent is computationally
very expensive.

• Hence if the number of training examples is large,
then batch gradient descent is not preferred.
Instead, we prefer to use stochastic gradient
descent or mini-batch gradient descent.

Stochastic Gradient Descent

• This is a type of gradient descent which processes 1
training example per iteration.

• Hence, the parameters are being updated even after
one iteration in which only a single example has been
processed.

• Hence this is quite faster than batch gradient descent.

• But again, when the number of training examples is
large, even then it processes only one example which
can be additional overhead for the system as the
number of iterations will be quite large.

Mini Batch Gradient Descent

• This is a type of gradient descent which works
faster than both batch gradient descent and
stochastic gradient descent.

• Here b examples where b<m are processed per
iteration. So even if the number of training
examples is large, it is processed in batches of b
training examples in one go.

• Thus, it works for larger training examples and that
too with lesser number of iterations.

Training

• Training a model is the process of iteratively improving
your prediction equation by looping through the dataset
multiple times, each time updating the weight and bias
values in the direction indicated by the slope of the cost
function (gradient).

• Training is complete when we reach an acceptable error
threshold, or when subsequent training iterations fail to
reduce our cost.

• Before training we need to initialize our weights (set
default values), set our hyperparameters (learning rate
and number of iterations), and prepare to log our
progress over each iteration.

Visualizing

Visualizing

Visualizing

Cost History

Multiple Regression

• Multiple linear regression is used to estimate the
relationship between two or more independent variables
and one dependent variable. You can use multiple linear
regression when you want to know:

• How strong the relationship is between two or more
independent variables and one dependent variable (e.g.
how rainfall, temperature, and amount of fertilizer
added affect crop growth).

• The value of the dependent variable at a certain value of
the independent variables (e.g. the expected yield of a
crop at certain levels of rainfall, temperature, and
fertilizer addition).

Multiple Regression

• y = the predicted value of the dependent variable

• B0 = the y-intercept (value of y when all other parameters are set to 0)

• B1X1= the regression coefficient (B1) of the first independent variable
(X1) (a.k.a. the effect that increasing the value of the independent
variable has on the predicted y value)

• … = do the same for however many independent variables you are
testing

• BnXn = the regression coefficient of the last independent variable

• e = model error (a.k.a. how much variation there is in our estimate of
y)

Multiple Regression

• Let’s say we are given data on TV, radio, and
newspaper advertising spend for a list of
companies, and our goal is to predict sales in
terms of units sold.

Growing Complexity

• As the number of features grows, the complexity of our
model increases and it becomes increasingly difficult to
visualize, or even comprehend, our data.

• One solution is to break the data apart and compare 1-2
features at a time. In this example we explore how Radio
and TV investment impacts Sales.

Normalization

• Real world dataset contains features that highly vary in
magnitudes, units, and range.

• Normalisation should be performed when the scale of a
feature is irrelevant or misleading and not should
Normalise when the the scale is meaningful.

• The algorithms which use Euclidean Distance measure are
sensitive to Magnitudes. Here feature scaling helps to
weigh all the features equally.

• Formally, If a feature in the dataset is big in scale compared
to others then in algorithms where Euclidean distance is
measured this big scaled feature becomes dominating and
needs to be normalized.

Normalization

• Techniques:
– Feature Scaling or Standardization
– Min Max Scaling
– Robust Scaler

Feature Scaling

• Feature Scaling or Standardization: It is a step of Data
Pre-Processing which is applied to independent
variables or features of data.

• It basically helps to normalise the data within a
particular range. Sometimes, it also helps in speeding
up the calculations in an algorithm.

• Package Used:
– sklearn.preprocessing

• Import:
– from sklearn.preprocessing import StandardScaler

Feature Scaling

• Formula used in Backend
– Standardisation replaces the values by their Z

scores.

– Mostly the Fit method is used for Feature
scaling.

Standard Scaler

• The idea behind StandardScaler is that it will
transform your data such that its distribution
will have a mean value 0 and standard deviation
of 1.

• Given the distribution of the data, each value in
the dataset will have the sample mean value
subtracted, and then divided by the standard
deviation of the whole dataset.

Standardization

• Standardization assumes that your data has a
Gaussian (bell curve) distribution.

• This does not strictly have to be true, but the
technique is more effective if your attribute
distribution is Gaussian.

• Standardization is useful when your data has
varying scales and the algorithm you are using does
make assumptions about your data having a
Gaussian distribution, such as linear regression,
logistic regression, and linear discriminant analysis.

Min-Max Scaling Normalization

• Here your data Z is rescaled such that any specific z
will now be 0 ≤ z ≤ 1, and is done through this formula:

• It refers to rescaling real valued numeric attributes
into the range 0 and 1.

• It is useful to scale the input attributes for a model
that relies on the magnitude of values, such as
distance measures used in k-nearest neighbors and in
the preparation of coefficients in regression.

Min-Max Scaling Normalization

• Normalization is a good technique to use when
you do not know the distribution of your data or
when you know the distribution is not Gaussian
(a bell curve).

• Normalization is useful when your data has
varying scales and the algorithm you are using
does not make assumptions about the
distribution of your data, such as k-nearest
neighbors and artificial neural networks.

Robust Scaler

• Robust Scaler algorithms scale features that are robust to
outliers.

• The method it follows is almost similar to the MinMax
Scaler but it uses the interquartile range (rather than the
min-max used in MinMax Scaler).

• The median and scales of the data are removed by this
scaling algorithm according to the quantile range.

• It, thus, follows the following formula:

• Where Q1 is the 1st quartile, and Q3 is the third quartile.

Making Predictions

• Our predict function outputs an estimate of
sales given our current weights (coefficients)
and a company’s TV, radio, and newspaper
spend. Our model will try to identify weight
values that most reduce our cost function.

Sales=W1TV+W2Radio+W3Newspaper

Initialize Weights

W1 = 0.0

W2 = 0.0

W3 = 0.0

weights = np.array([

 [W1],

 [W2],

 [W3]

])

Code

def predict(features, weights):

 **

 features - (200, 3)

 weights - (3, 1)

 predictions - (200,1)

 **

 predictions = np.dot(features, weights)

 return predictions

Cost Function

• Now we need a cost function to audit how our
model is performing.

• The math is the same, except we swap the mx+b
expression for W1x1+W2x2+W3x3.

• We also divide the expression by 2 to make
derivative calculations simpler.

Cost Function

def cost_function(features, targets, weights):

 features:(200,3)

 targets: (200,1)

 weights:(3,1)

 returns average squared error among predictions

 N = len(targets)

 predictions = predict(features, weights)

 # Matrix math lets use do this without looping

 sq_error = (predictions - targets)**2

 # Return average squared error among predictions

 return 1.0/(2*N) * sq_error.sum()

Gradient descent

• Again using the Chain rule we can compute the
gradient–a vector of partial derivatives
describing the slope of the cost function for
each weight.

f (W′ 1)=−x1(y−(W1x1+W2x2+W3x3))

f (W′ 2)=−x2(y−(W1x1+W2x2+W3x3))

f (W′ 3)=−x3(y−(W1x1+W2x2+W3x3))

Gradient descent

def update_weights(features, targets, weights, lr):

 '''

 Features:(200, 3) Targets: (200, 1) Weights:(3, 1)

 '''

 predictions = predict(features, weights)

 #Extract our features

 x1 = features[:,0]

 x2 = features[:,1]

 x3 = features[:,2]

 # Use matrix cross product (*) to simultaneously

 # calculate the derivative for each weight

 d_w1 = -x1*(targets - predictions)

 d_w2 = -x2*(targets - predictions)

 d_w3 = -x3*(targets - predictions)

 # Multiply the mean derivative by the learning rate

 # and subtract from our weights (remember gradient points in direction of steepest ASCENT)

 weights[0][0] -= (lr * np.mean(d_w1))

 weights[1][0] -= (lr * np.mean(d_w2))

 weights[2][0] -= (lr * np.mean(d_w3))

 return weights

Simplifying with matrices

• The gradient descent code above has a lot of duplication. Can
we improve it somehow? One way to refactor would be to
loop through our features and weights–allowing our function
to handle any number of features. However there is another
even better technique: vectorized gradient descent.

• Math
– We use the same formula as above, but instead of

operating on a single feature at a time, we use matrix
multiplication to operative on all features and weights
simultaneously. We replace the xi terms with a single
feature matrix X.

gradient=−X(targets−predictions)

Bias Term

• Our train function is the same as for simple linear
regression, however we’re going to make one
final tweak before running: add a bias term to
our feature matrix.

• In our example, it’s very unlikely that sales would
be zero if companies stopped advertising.

• Possible reasons for this might include past
advertising, existing customer relationships,
retail locations, and salespeople.

• A bias term will help us capture this base case.

Bias Term

• Code
– Below we add a constant 1 to our features

matrix. By setting this value to 1, it turns our
bias term into a constant.

bias = np.ones(shape=(len(features),1))

features = np.append(bias, features, axis=1)

Model Evaluation

• After training our model through 1000
iterations with a learning rate of .0005, we
finally arrive at a set of weights we can use to
make predictions:

Sales=4.7TV+3.5Radio+.81Newspaper+13.9

• Our MSE cost dropped from 110.86 to 6.25.

Model Evaluation

Useful web resources

• www.mitu.co.in

• www.scikit-learn.org

• www.towardsdatascience.com

• www.medium.com

• www.analyticsvidhya.com

• www.kaggle.com

• www.stephacking.com

• www.github.com

http://www.mitu.co.in/
http://www.scikit-learn.org/
http://www.towardsdatascience.com/
http://www.medium.com/
http://www.analyticsvidhya.com/
http://www.kaggle.com/
http://www.stephacking.com/
http://www.github.com/

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 5.1.6.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies MITUSkillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

