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Regression?

• Regression analysis is a statistical method that 
helps us to analyse and understand the 
relationship between two or more variables of 
interest. 

• The process that is adapted to perform 
regression analysis helps to understand which 
factors are important, which factors can be 
ignored and how they are influencing each 
other.



Regression?

• Introduction, types of regression. Simple 
regression- Types, Making predictions, Cost 
function, Gradient descent, Training, Model 
evaluation.

• Multivariable regression : Growing complexity, 
Normalization, Making predictions, Initialize 
weights, Cost function, Gradient descent, 
Simplifying with matrices, Bias term, Model 
evaluation
Taken From-
https://ml-cheatsheet.readthedocs.io/en/latest/linear_regression.html



Regression?

• For the regression analysis is be a successful 
method, we understand the following terms:
– Dependent Variable: This is the variable that 

we are trying to understand or forecast.
– Independent Variable: These are factors that 

influence the analysis or target variable and 
provide us with information regarding the 
relationship of the variables with the target 
variable.



Example:



Example:



Regression 

• In regression, we normally have one dependent variable 
and one or more independent variables. 

• Here we try to “regress” the value of dependent 
variable “Y” with the help of the independent variables. 

• In other words, we are trying to understand, how does 
the value of ‘Y’ change w.r.t change in ‘X’.



Uses of Regression

• Regression analysis is used for prediction and forecasting. This 
has a substantial overlap to the field of machine learning. This 
statistical method is used across different industries such as,
– Financial Industry- Understand the trend in the stock prices, 

forecast the prices, evaluate risks in the insurance domain
– Marketing- Understand the effectiveness of market 

campaigns, forecast pricing and sales of the product. 
– Manufacturing- Evaluate the relationship of variables that 

determine to define a better engine to provide better 
performance

– Medicine- Forecast the different combination of medicines 
to prepare generic medicines for diseases.



Terminologies

• Outliers 
– Suppose there is an observation in the 

dataset that has a very high or very low value 
as compared to the other observations in the 
data, i.e. it does not belong to the population, 
such an observation is called an outlier. 

– In simple words, it is an extreme value. An 
outlier is a problem because many times it 
hampers the results we get.



Terminologies

• Multicollinearity
– When the independent variables are highly 

correlated to each other, then the variables are 
said to be multicollinear. 

– Many types of regression techniques assume 
multicollinearity should not be present in the 
dataset. 

– It is because it causes problems in ranking 
variables based on its importance, or it makes the 
job difficult in selecting the most important 
independent variable.



Terminologies

• Heteroscedasticity
–When the variation between the target variable and the 

independent variable is not constant, it is called 
heteroscedasticity. 

– Example-As one’s income increases, the variability of 
food consumption will increase. 

– A poorer person will spend a rather constant amount by 
always eating inexpensive food; a wealthier person may 
occasionally buy inexpensive food and at other times, 
eat expensive meals. 

– Those with higher incomes display a greater variability of 
food consumption.



Terminologies

• When we use unnecessary explanatory 
variables, it might lead to overfitting. 

• Overfitting means that our algorithm works 
well on the training set but is unable to perform 
better on the test sets. It is also known as a 
problem of high variance.

• When our algorithm works so poorly that it is 
unable to fit even a training set well, then it is 
said to underfit the data. It is also known as a 
problem of high bias.



Terminologies



Types of Regression

• Linear Regression

• Multiple Regression

• Logistic Regression

• Polynomial Regression

• Regularized Models
– Ridge Regression
– Lasso Regression
– ElasticNet Regression

• Outlier Based Model
– RANSAC 



Linear Regression

• The simplest of all regression types is Linear Regression 
where it tries to establish relationships between 
Independent and Dependent variables. 

• The Dependent variable considered here is always a 
continuous variable.

• Linear Regression is a predictive model used for finding 
the linear relationship between a dependent variable 
and one or more independent variables.



Linear Regression

• Here, ‘Y’ is our dependent variable, which is a 
continuous numerical and we are trying to understand 
how does ‘Y’ change with ‘X’.

• So, if we are supposed to answer, the above question of 
“What will be the GRE score of the student, if his CCGPA 
is 8.32?” our go to option should be linear regression.



Simple Linear Regression

• As the model is used to predict the dependent 
variable, the relationship between the variables can be 
written in the below format.

Yi = β0 + β1Xi +εi

• Where,

– Yi – Dependent variable

– β0 — Intercept

– β1 – Slope Coefficient

– Xi – Independent Variable

– εi – Random Error Term



Simple Linear Regression

• The main factor that is considered as part of Regression 
analysis is understanding the variance between the variables. 
For understanding the variance, we need to understand the 
measures of variation.
– SST = total sum of squares (Total Variation)
• Measures the variation of the Y i values around their 

mean Y
– SSR = regression sum of squares (Explained Variation)
• Variation attributable to the relationship between X and 

Y
– SSE = error sum of squares (Unexplained Variation)
• Variation in Y attributable to factors other than X



Polynomial Regression

• This type of regression technique is used to model 
nonlinear equations by taking polynomial functions 
of independent variables.

• In the figure given below, you can see the red curve 
fits the data better than the green curve. 

• Hence in the situations where the relationship 
between the dependent and independent variable 
seems to be non-linear, we can deploy Polynomial 
Regression Models.



Polynomial Regression



Logistic Regression

• Logistic Regression is also known as Logit, Maximum-Entropy 
classifier is a supervised learning method for classification. It 
establishes a relation between dependent class variables and 
independent variables using regression.

• The dependent variable is categorical i.e. it can take only integral 
values representing different classes. The probabilities 
describing the possible outcomes of a query point are modelled 
using a logistic function. 

• This model belongs to a family of discriminative classifiers. They 
rely on attributes which discriminate the classes well. This model 
is used when we have 2 classes of dependent variables. When 
there are more than 2 classes, then we have another regression 
method which helps us to predict the target variable better.



Linear Discriminant Analysis (LDA)

• Discriminant Analysis is used for classifying 
observations to a class or category based on 
predictor (independent) variables of the data.

• Discriminant Analysis creates a model to predict 
future observations where the classes are known. 

• LDA comes to our rescue in situations when logistic 
regression is unstable when

– Classed are well separated

– Data is small

– When we have more than 2 classes



Errors in Linear Regression



Ridge Regression

• A regression model that uses L1 regularization 
technique is called Lasso Regression and model 
which uses L2 is called Ridge Regression.

• The key difference between these two is the 
penalty term.

• Ridge regression adds “squared magnitude” of 
coefficient as penalty term to the loss function. 
Here the highlighted part represents L2 
regularization element.



Ridge Regression – Cost Function

• Here, if lambda is zero then you can imagine we get 
back OLS. 

• However, if lambda is very large then it will add too 
much weight and it will lead to under-fitting. 

• Having said that it’s important how lambda is 
chosen. This technique works very well to avoid 
over-fitting issue.



Lasso Regression – Cost Function

• Lasso Regression (Least Absolute Shrinkage and 
Selection Operator) adds “absolute value of 
magnitude” of coefficient as penalty term to the 
loss function.

• Again, if lambda is zero then we will get back OLS 
whereas very large value will make coefficients 
zero hence it will under-fit.



Comparing 

• The key difference between these techniques is 
that Lasso shrinks the less important feature’s 
coefficient to zero thus, removing some feature 
altogether. 

• So, this works well for feature selection in case we 
have a huge number of features.



Elastic Net

• Elastic net is a popular type of regularized linear 
regression that combines two popular penalties, 
specifically the L1 and L2 penalty functions.

• a hyperparameter “alpha” is provided to assign how 
much weight is given to each of the L1 and L2 penalties. 

• Alpha is a value between 0 and 1 and is used to weight 
the contribution of the L1 penalty and one minus the 
alpha value is used to weight the L2 penalty.

• elastic_net_penalty = (alpha * l1_penalty) + ((1 – alpha) * 
l2_penalty)



Robust Regression

• A common problem with linear regressions is 
caused by the presence of outliers. 

• An ordinary least square approach will take them 
into account and the result (in terms of 
coefficients) will be therefore biased. 

• In the following figure, there's an example of such a 
behavior:



Robust Regression



Well-Posed Learning Problems

• A computer program is said to learn from 
experience E with respect to some class of tasks 
T and performance measure P, if its 
performance at tasks in T, as measured by P, 
improves with experience E.



Simple Regression 

• Let’s say we are given a dataset with the 
following columns (features): how much a 
company spends on Radio advertising each year 
and its annual Sales in terms of units sold. 

• We are trying to develop an equation that will 
let us to predict units sold based on how much a 
company spends on radio advertising. 

• The rows (observations) represent companies.



Simple Regression 



Making Predictions

• Our prediction function outputs an estimate of sales given a company’s 
radio advertising spend and our current values for Weight and Bias.

Sales=Weight Radio+Bias⋅
• Weight

•     the coefficient for the Radio independent variable. In machine 
learning we call coefficients weights.

• Radio

•     the independent variable. In machine learning we call these variables 
features.

• Bias

•     the intercept where our line intercepts the y-axis. In machine learning 
we can call intercepts bias. Bias offsets all predictions that we make. 



Making Predictions

• Our algorithm will try to learn the correct values for 
Weight and Bias. By the end of our training, our 
equation will approximate the line of best fit.



Cost Function

• The prediction function is nice, but for our purposes 
we don’t really need it. What we need is a cost 
function so we can start optimizing our weights.

• Let’s use MSE (L2) as our cost function. MSE 
measures the average squared difference between 
an observation’s actual and predicted values. 

• The output is a single number representing the cost, 
or score, associated with our current set of weights. 
Our goal is to minimize MSE to improve the accuracy 
of our model.



Math 

• Given our simple linear equation y=mx+b, we 
can calculate MSE as:



Code 

def cost_function(radio, sales, weight, bias):

    companies = len(radio)

    total_error = 0.0

    for i in range(companies):

        total_error += (sales[i] - (weight*radio[i] + bias))**2

    return total_error / companies



Gradient Descent

• Gradient descent is an iterative optimization 
algorithm to find the minimum of a function. 
Here that function is our Loss Function.



Understanding Gradient Descent



Example 

• Imagine a valley and a person with no sense of 
direction who wants to get to the bottom of the 
valley. 

• He goes down the slope and takes large steps 
when the slope is steep and small steps when 
the slope is less steep. 

• He decides his next position based on his 
current position and stops when he gets to the 
bottom of the valley which was his goal.



Example 

• Let’s try applying gradient descent to m and c 
and approach it step by step:
– Initially let m = 0 and c = 0. Let L be our 

learning rate. This controls how much the 
value of m changes with each step. L could be 
a small value like 0.0001 for good accuracy.

– Calculate the partial derivative of the loss 
function with respect to m, and plug in the 
current values of x, y, m and c in it to obtain 
the derivative value D.



Example

• D  is the value of the partial derivative with ₘ
respect to m. Similarly lets find the partial 
derivative with respect to c, Dc :



Example

Now we update the current value of m and c using 
the following equation:

• 4. We repeat this process until our loss function is 
a very small value or ideally 0 (which means 0 
error or 100% accuracy). The value of m and c that 
we are left with now will be the optimum values.



Example 

• Now going back to our analogy, m can be considered the 
current position of the person. D is equivalent to the steepness 
of the slope and L can be the speed with which he moves. 

• Now the new value of m that we calculate using the above 
equation will be his next position, and L×D will be the size of 
the steps he will take. 

• When the slope is more steep (D is more) he takes longer steps 
and when it is less steep (D is less), he takes smaller steps. 
Finally he arrives at the bottom of the valley which corresponds 
to our loss = 0.

• Now with the optimum value of m and c our model is ready to 
make predictions !



Types 

• Batch Gradient Descent

• Stochastic Gradient Descent

• Mini Batch gradient descent



Batch Gradient Descent

• This is a type of gradient descent which processes 
all the training examples for each iteration of 
gradient descent. 

• But if the number of training examples is large, 
then batch gradient descent is computationally 
very expensive. 

• Hence if the number of training examples is large, 
then batch gradient descent is not preferred. 
Instead, we prefer to use stochastic gradient 
descent or mini-batch gradient descent.



Stochastic Gradient Descent

• This is a type of gradient descent which processes 1 
training example per iteration. 

• Hence, the parameters are being updated even after 
one iteration in which only a single example has been 
processed. 

• Hence this is quite faster than batch gradient descent. 

• But again, when the number of training examples is 
large, even then it processes only one example which 
can be additional overhead for the system as the 
number of iterations will be quite large.



Mini Batch Gradient Descent

• This is a type of gradient descent which works 
faster than both batch gradient descent and 
stochastic gradient descent. 

• Here b examples where b<m are processed per 
iteration. So even if the number of training 
examples is large, it is processed in batches of b 
training examples in one go. 

• Thus, it works for larger training examples and that 
too with lesser number of iterations. 



Training 

• Training a model is the process of iteratively improving 
your prediction equation by looping through the dataset 
multiple times, each time updating the weight and bias 
values in the direction indicated by the slope of the cost 
function (gradient). 

• Training is complete when we reach an acceptable error 
threshold, or when subsequent training iterations fail to 
reduce our cost.

• Before training we need to initialize our weights (set 
default values), set our hyperparameters (learning rate 
and number of iterations), and prepare to log our 
progress over each iteration.



Visualizing 



Visualizing 



Visualizing 



Cost History



Multiple Regression

• Multiple linear regression is used to estimate the 
relationship between two or more independent variables 
and one dependent variable. You can use multiple linear 
regression when you want to know:

• How strong the relationship is between two or more 
independent variables and one dependent variable (e.g. 
how rainfall, temperature, and amount of fertilizer 
added affect crop growth).

• The value of the dependent variable at a certain value of 
the independent variables (e.g. the expected yield of a 
crop at certain levels of rainfall, temperature, and 
fertilizer addition).



Multiple Regression

• y = the predicted value of the dependent variable

• B0 = the y-intercept (value of y when all other parameters are set to 0)

• B1X1= the regression coefficient (B1) of the first independent variable 
(X1) (a.k.a. the effect that increasing the value of the independent 
variable has on the predicted y value)

• … = do the same for however many independent variables you are 
testing

• BnXn = the regression coefficient of the last independent variable

• e = model error (a.k.a. how much variation there is in our estimate of 
y)



Multiple Regression

• Let’s say we are given data on TV, radio, and 
newspaper advertising spend for a list of 
companies, and our goal is to predict sales in 
terms of units sold.



Growing Complexity

• As the number of features grows, the complexity of our 
model increases and it becomes increasingly difficult to 
visualize, or even comprehend, our data.

• One solution is to break the data apart and compare 1-2 
features at a time. In this example we explore how Radio 
and TV investment impacts Sales.



Normalization 

• Real world dataset contains features that highly vary in 
magnitudes, units, and range. 

• Normalisation should be performed when the scale of a 
feature is irrelevant or misleading and not should 
Normalise when the the scale is meaningful.

• The algorithms which use Euclidean Distance measure are 
sensitive to Magnitudes. Here feature scaling helps to 
weigh all the features equally.

• Formally, If a feature in the dataset is big in scale compared 
to others then in algorithms where Euclidean distance is 
measured this big scaled feature becomes dominating and 
needs to be normalized. 



Normalization 

• Techniques:
– Feature Scaling or Standardization 
– Min Max Scaling
– Robust Scaler



Feature Scaling

• Feature Scaling or Standardization: It is a step of Data 
Pre-Processing which is applied to independent 
variables or features of data. 

• It basically helps to normalise the data within a 
particular range. Sometimes, it also helps in speeding 
up the calculations in an algorithm.

• Package Used:
– sklearn.preprocessing

• Import:
– from sklearn.preprocessing import StandardScaler



Feature Scaling

• Formula used in Backend
– Standardisation replaces the values by their Z 

scores.

– Mostly the Fit method is used for Feature 
scaling.



Standard Scaler

• The idea behind StandardScaler is that it will 
transform your data such that its distribution 
will have a mean value 0 and standard deviation 
of 1. 

• Given the distribution of the data, each value in 
the dataset will have the sample mean value 
subtracted, and then divided by the standard 
deviation of the whole dataset.



Standardization

• Standardization assumes that your data has a 
Gaussian (bell curve) distribution. 

• This does not strictly have to be true, but the 
technique is more effective if your attribute 
distribution is Gaussian. 

• Standardization is useful when your data has 
varying scales and the algorithm you are using does 
make assumptions about your data having a 
Gaussian distribution, such as linear regression, 
logistic regression, and linear discriminant analysis.



Min-Max Scaling Normalization 

• Here your data Z is rescaled such that any specific z 
will now be 0 ≤ z ≤ 1, and is done through this formula:

• It refers to rescaling real valued numeric attributes 
into the range 0 and 1.

• It is useful to scale the input attributes for a model 
that relies on the magnitude of values, such as 
distance measures used in k-nearest neighbors and in 
the preparation of coefficients in regression.



Min-Max Scaling Normalization 

• Normalization is a good technique to use when 
you do not know the distribution of your data or 
when you know the distribution is not Gaussian 
(a bell curve). 

• Normalization is useful when your data has 
varying scales and the algorithm you are using 
does not make assumptions about the 
distribution of your data, such as k-nearest 
neighbors and artificial neural networks.



Robust Scaler

• Robust Scaler algorithms scale features that are robust to 
outliers. 

• The method it follows is almost similar to the MinMax 
Scaler but it uses the interquartile range (rather than the 
min-max used in MinMax Scaler). 

• The median and scales of the data are removed by this 
scaling algorithm according to the quantile range.

• It, thus, follows the following formula:

• Where Q1 is the 1st quartile, and Q3 is the third quartile.



Making Predictions

• Our predict function outputs an estimate of 
sales given our current weights (coefficients) 
and a company’s TV, radio, and newspaper 
spend. Our model will try to identify weight 
values that most reduce our cost function.

Sales=W1TV+W2Radio+W3Newspaper



Initialize Weights

W1 = 0.0

W2 = 0.0

W3 = 0.0

weights = np.array([

    [W1],

    [W2],

    [W3]

])



Code 

def predict(features, weights):

  **

  features - (200, 3)

  weights - (3, 1)

  predictions - (200,1)

  **

  predictions = np.dot(features, weights)

  return predictions



Cost Function

• Now we need a cost function to audit how our 
model is performing. 

• The math is the same, except we swap the mx+b 
expression for W1x1+W2x2+W3x3. 

• We also divide the expression by 2 to make 
derivative calculations simpler.



Cost Function

def cost_function(features, targets, weights):

    features:(200,3)

    targets: (200,1)

    weights:(3,1)

    returns average squared error among predictions

    N = len(targets)

    predictions = predict(features, weights)

    # Matrix math lets use do this without looping

    sq_error = (predictions - targets)**2

    # Return average squared error among predictions

    return 1.0/(2*N) * sq_error.sum()



Gradient descent

• Again using the Chain rule we can compute the 
gradient–a vector of partial derivatives 
describing the slope of the cost function for 
each weight.

f (W′ 1)=−x1(y−(W1x1+W2x2+W3x3))

f (W′ 2)=−x2(y−(W1x1+W2x2+W3x3))

f (W′ 3)=−x3(y−(W1x1+W2x2+W3x3))



Gradient descent

def update_weights(features, targets, weights, lr):

    '''

    Features:(200, 3)      Targets: (200, 1)      Weights:(3, 1)

    '''

    predictions = predict(features, weights)

    #Extract our features

    x1 = features[:,0]

    x2 = features[:,1]

    x3 = features[:,2]

    # Use matrix cross product (*) to simultaneously

    # calculate the derivative for each weight

    d_w1 = -x1*(targets - predictions)

    d_w2 = -x2*(targets - predictions)

    d_w3 = -x3*(targets - predictions)

    # Multiply the mean derivative by the learning rate

    # and subtract from our weights (remember gradient points in direction of steepest ASCENT)

    weights[0][0] -= (lr * np.mean(d_w1))

    weights[1][0] -= (lr * np.mean(d_w2))

    weights[2][0] -= (lr * np.mean(d_w3))

    return weights



Simplifying with matrices

• The gradient descent code above has a lot of duplication. Can 
we improve it somehow? One way to refactor would be to 
loop through our features and weights–allowing our function 
to handle any number of features. However there is another 
even better technique: vectorized gradient descent.

• Math
– We use the same formula as above, but instead of 

operating on a single feature at a time, we use matrix 
multiplication to operative on all features and weights 
simultaneously. We replace the xi terms with a single 
feature matrix X.

gradient=−X(targets−predictions)



Bias Term

• Our train function is the same as for simple linear 
regression, however we’re going to make one 
final tweak before running: add a bias term to 
our feature matrix.

• In our example, it’s very unlikely that sales would 
be zero if companies stopped advertising. 

• Possible reasons for this might include past 
advertising, existing customer relationships, 
retail locations, and salespeople. 

• A bias term will help us capture this base case.



Bias Term

• Code
– Below we add a constant 1 to our features 

matrix. By setting this value to 1, it turns our 
bias term into a constant.

bias = np.ones(shape=(len(features),1))

features = np.append(bias, features, axis=1)



Model Evaluation

• After training our model through 1000 
iterations with a learning rate of .0005, we 
finally arrive at a set of weights we can use to 
make predictions:

Sales=4.7TV+3.5Radio+.81Newspaper+13.9

• Our MSE cost dropped from 110.86 to 6.25.



Model Evaluation



Useful web resources

• www.mitu.co.in 

• www.scikit-learn.org  

• www.towardsdatascience.com

• www.medium.com

• www.analyticsvidhya.com

• www.kaggle.com

• www.stephacking.com

• www.github.com 

http://www.mitu.co.in/
http://www.scikit-learn.org/
http://www.towardsdatascience.com/
http://www.medium.com/
http://www.analyticsvidhya.com/
http://www.kaggle.com/
http://www.stephacking.com/
http://www.github.com/


tushar@tusharkute.com

      Thank you

This presentation is created using LibreOffice Impress 5.1.6.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in 

http://tusharkute.com
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