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Lets see the example...

• Suppose a job seeker was deciding between several 
offers, some closer or further from home, with various 
levels of pay and benefits. 

• He or she might create a list with the features of each 
position. Based on these features, rules can be created to 
eliminate some options. 

• For instance, "if I have a commute longer than an hour, 
then I will be unhappy", or "if I make less than $50k, I 
won't be able to support my family." 

• The difficult decision of predicting future happiness can 
be reduced to a series of small, but increasingly specific 
choices.



Decision tree

• Decision tree is a graph to represent choices 
and their results in form of a tree. 

• The nodes in the graph represent an event or 
choice and the edges of the graph represent the 
decision rules or conditions. 

• It is mostly used in Machine Learning and Data 
Mining applications using Python.



Understanding Decision tree

• As you might intuit from the name, decision tree 
learners build a model in the form of a tree structure. 

• The model itself comprises a series of logical 
decisions, similar to a flowchart, with decision nodes 
that indicate a decision to be made on an attribute.

• These split into branches that indicate the decision's 
choices. 

• The tree is terminated by leaf nodes (also known as 
terminal nodes) that denote the result of following a 
combination of decisions.



Decision tree – example 

• Examples of use of decision tress is − predicting an 
email as spam or not spam, predicting of a tumor is 
cancerous or predicting a loan as a good or bad 
credit risk based on the factors in each of these. 

• Generally, a model is created with observed data 
also called training data. Then a set of validation 
data is used to verify and improve the model. 

• For new set of predictor variable, we use this 
model to arrive at a decision on the category (yes/
No, spam/not spam) of the data.



Few more applications

• Credit scoring models in which the criteria that 
causes an applicant to be rejected need to be 
well-specified

• Marketing studies of customer churn or 
customer satisfaction that will be shared with 
management or advertising agencies

• Diagnosis of medical conditions based on 
laboratory measurements, symptoms, or rate of 
disease progression



Divide and Conquer

• Decision trees are built using a heuristic called 
recursive partitioning. 

• This approach is generally known as divide and 
conquer because it uses the feature values to split the 
data into smaller and smaller subsets of similar classes.

• Beginning at the root node, which represents the 
entire dataset, the algorithm chooses a feature that is 
the most predictive of the target class. 

• The examples are then partitioned into groups of 
distinct values of this feature; this decision forms the 
first set of tree branches.



Divide and Conquer

• To illustrate the tree building process, let's 
consider a simple example. 

• Imagine that you are working for a Hollywood 
film studio, and your desk is piled high with 
screenplays. 

• Rather than read each one cover-to-cover, you 
decide to develop a decision tree algorithm to 
predict whether a potential movie would fall 
into one of three categories: mainstream hit, 
critic's choice, or box office bust.



Continuing...

• To gather data for your model, you turn to the studio 
archives to examine th previous ten years of movie 
releases. 

• After reviewing the data for 30 different movie 
scripts, a pattern emerges. 

• There seems to be a relationship between the film's 
proposed shooting budget, the number of A-list 
celebrities lined up for starring roles, and the 
categories of success. 

• A scatter plot of this data might look something 
like . . .



The scatterplot



Scatterplot – Phase:1



Scatterplot – Phase:2



The decision tree model



The C5.0 Algorithm

• There are numerous implementations of decision trees, 
but one of the most well-known is the C5.0 algorithm. 

• This algorithm was developed by computer scientist J. 
Ross Quinlan as an improved version of his prior 
algorithm, C4.5, which itself is an improvement over his 
ID3 (Iterative Dichotomiser 3) algorithm. 

• Although Quinlan markets C5.0 to commercial clients 
(see http://www.rulequest.com/ for details), the source 
code for a single-threaded version of the algorithm was 
made publically available, and has therefore been 
incorporated into programs such as R.



The C4.5 Algorithm

• To further confuse matters, a popular Java-
based open-source alternative to C4.5, titled 
J48, is included in the RWeka package. 

• Because the differences among C5.0, C4.5, and 
J48 are minor, the principles in this 
presentation will apply to any of these three 
methods and the algorithms should be 
considered synonymous.



The Decision tree algorithm



Example:



Example:



Gini index

• Gini index and information gain both of these methods are 
used to select from the n attributes of the dataset which 
attribute would be placed at the root node or the internal 
node.

• Gini Index is a metric to measure how often a randomly 
chosen element would be incorrectly identified.

• It means an attribute with lower gini index should be 
preferred.

• Sklearn supports “gini” criteria for Gini Index and by default, 
it takes “gini” value.



Entropy

• Entropy is the measure of uncertainty of a 
random variable, it characterizes the impurity of 
an arbitrary collection of examples. The higher 
the entropy the more the information content.



Search for a good tree

• How should you go about building a decision tree?

• The space of decision trees is too big for systematic 
search.

• Stop and 

– return the a value for the target feature or 

– a distribution over target feature values

• Choose a test (e.g. an input feature) to split on. 

– For each value of the test, build a subtree for those 
examples with this value for the test.



Top down induction

• A  the “best” decision attribute for next node

• Assign A as decision attribute for node

• For each value of A create new descendant 

• Sort training examples to leaf node according to the 

attribute value of the branch

• If all training examples are perfectly classified (same 

value of target attribute) stop, else iterate over new 

leaf nodes.

1. Which node to proceed with?

2. When to stop?



Choices 

• When to stop
– no more input features

– all examples are classified the same

– too few examples to make an informative split

• Which test to split on
– split gives smallest error.

– With multi-valued features

– split on all values or 

– split values into half. 



Which attribute is best ?

A1=?

True False

[21+, 5-] [8+, 30-]

[29+,35-] A2=?

True False

[18+, 33-] [11+, 2-]

[29+,35-]



Principle Criterion

• Selection of an attribute to test at each node - 
choosing the most useful attribute for classifying 
examples. 

• Information gain

– measures how well a given attribute separates the training 
examples according to their target classification

– This measure is used to select among the candidate 
attributes at each step while growing the tree

– Gain is measure of how much we can reduce 
uncertainty (Value lies between 0,1)



Entropy 

• A measure for 

– uncertainty 

– purity 

– information content

• Information theory: optimal length code assigns (- log2p) bits to 

message having probability p
• S is a sample of training examples

– p+ is the proportion of positive examples in S

– p- is the proportion of negative examples in S

• Entropy of S: average optimal number of bits to encode 
information about  certainty/uncertainty about S
Entropy(S) = p+(-log2p+) + p-(-log2p-) = -p+log2p+- p-log2p-



Entropy 

• S is a sample of training examples

• p+ is the proportion of positive examples

• p- is the proportion of negative examples

• Entropy measures the impurity of S

Entropy(S) = -p+log2p+- p-log2 p-

• The entropy is 0 if the outcome 
is ``certain”. 

• The entropy is maximum if we 
have no knowledge of the 
system (or any outcome is 
equally possible). 



Information Gain

Gain(S,A): expected reduction in entropy due to partitioning S 
on attribute A

A1=?

True False

[21+, 5-] [8+, 30-]

[29+,35-] A2=?

True False

[18+, 33-] [11+, 2-]

[29+,35-]

Gain(S,A)=Entropy(S)  vvalues(A) |Sv|/|S| Entropy(Sv)

Entropy([29+,35-]) = -29/64 log2 29/64 – 35/64 log2 35/64

                             = 0.99



Information Gain

A1=?

True False

[21+, 5-] [8+, 30-]

[29+,35-]

Entropy([21+,5-])   = 0.71
Entropy([8+,30-]) = 0.74
Gain(S,A1)=Entropy(S)
      -26/64*Entropy([21+,5-]) 

      -38/64*Entropy([8+,30-])

    =0.27

Entropy([18+,33-]) = 0.94

Entropy([8+,30-]) = 0.62

Gain(S,A2)=Entropy(S)

      -51/64*Entropy([18+,33-]) 

      -13/64*Entropy([11+,2-])

    =0.12

A2=?

True False

[18+, 33-] [11+, 2-]

[29+,35-]



Selecting next attribute

Humidity

High Normal

[3+, 4-] [6+, 1-]

S=[9+,5-]
E=0.940

Gain(S,Humidity)
=0.940-(7/14)*0.985 
  – (7/14)*0.592
=0.151

E=0.985 E=0.592

Wind

Weak Strong

[6+, 2-] [3+, 3-]

S=[9+,5-]
E=0.940

Gain(S,Wind)
=0.940-(8/14)*0.811 
  – (6/14)*1.0
=0.048

Humidity provides greater info. gain than Wind, w.r.t target classification.Humidity provides greater info. gain than Wind, w.r.t target classification.



Selecting next attribute

   Outlook

Sunny Rain

[2+, 3-] [3+, 2-]

S=[9+,5-]
E=0.940

Gain(S,Outlook)
=0.940-(5/14)*0.971 
  -(4/14)*0.0 – (5/14)*0.0971
=0.247

E=0.971 E=0.971

Overcast

[4+, 0]

E=0.0



Selecting next attribute

The information gain values for the 4 attributes are:
• Gain(S,Outlook) =0.247

• Gain(S,Humidity) =0.151

• Gain(S,Wind) =0.048

• Gain(S,Temperature) =0.029

where S denotes the collection of training examples

Note: 0Log20 =0Note: 0Log20 =0



Packages needed

• Data Analytics
– sudo pip3 install pandas

• Decision Tree Algorithm
– sudo pip3 install sklearn

• Visualization
– sudo pip3 install ipython
– sudo pip3 install graphviz
– sudo pip3 install pydotplus
– sudo apt install graphviz



Hypothesis Space Search

• As per Tom Mitchell's,

• ".....For example, consider the space of hypotheses 
that could in principle be output by the above 
checkers learner. This hypothesis space consists of 
all evaluation functions that can be represented by 
some choice of values for the weights wo through 
w6. The learner's task is thus to search through this 
vast space to locate the hypothesis that is most 
consistent with the available training examples....."

• Hence , Basically all possible combination of distinct 
trees makes the hypothesis space. 



Hypothesis Space Search

• Lets say if you have chosen to represent your 
function to be a linear line then all possible 
linear lines which go through the data (given 
input, output) makes up your hypothesis space.

• Each tree= Single hypothesis , that says this tree 
shall best fit my data and predict the correct 
results.

• therefore combination of all such possible 
tress= hypothesis space.



Hypothesis Space Search



Simplified Decision Tree



Decision Tree Classification

• We will predict whether a bank note is authentic 
or fake depending upon the four different 
attributes of the image of the note. 

• The attributes are Variance of wavelet 
transformed image, curtosis of the image, 
entropy, and skewness of the image.

• Dataset:
– https://archive.ics.uci.edu/ml/datasets/bankn

ote+authentication

https://archive.ics.uci.edu/ml/datasets/banknote+authentication
https://archive.ics.uci.edu/ml/datasets/banknote+authentication


Dataset



Reading the dataset



Training the classifier



Splitting training and testing

X_train: (80%) y_train: (80%)

X_test: (20%) y_test: (20%)



train_test_split

• train_test_split(*arrays, **options)
– Split arrays or matrices into random train and 

test subsets
– *arrays : sequence of indexables with same 

length / shape[0]
• Allowed inputs are lists, numpy arrays, scipy-sparse 

matrices or pandas dataframes.

– test_size : float, int, or None (default is None)
• If float, should be between 0.0 and 1.0 and represent 

the proportion of the dataset to include in the test 
split.



DecisionTreeClassifier

• DecisionTreeClassifier (criterion=’gini’, splitter=’best’, 
max_depth=None, min_samples_split=2, 
min_samples_leaf=1, min_weight_fraction_leaf=0.0, 
max_features=None, random_state=None, 
max_leaf_nodes=None, min_impurity_decrease=0.0, 
min_impurity_split=None, class_weight=None, 
presort=False)



The fit function

• Fitting your model to (i.e. using the .fit() method on) the 
training data is essentially the training part of the 
modeling process. It finds the coefficients for the 
equation specified via the algorithm being used.

• Then, for a classifier, you can classify incoming data points 
(from a test set, or otherwise) using the predict method. 
Or, in the case of regression, your model will 
interpolate/extrapolate when predict is used on incoming 
data points.

• It also should be noted that sometimes the "fit" 
nomenclature is used for non-machine-learning methods, 
such as scalers and other preprocessing steps.



Characterizing the classifier



Output

Confusion matrix

Classification Report

Accuracy Score



Visualizing the tree



Tree



CART

• Decision Trees are divided into Classification 
and Regression Trees. 

• Regression trees are needed when the response 
variable is numeric or continuous. 

• Classification trees, as the name implies are 
used to separate the dataset into classes 
belonging to the response variable.



CART



Classification Trees

Reference: Super Data Science



Classification Trees

Reference: Super Data Science



Regression Trees

Reference: Super Data Science



Regression Trees

Reference: Super Data Science



Example:

• Practical



Resources

• https://stackabuse.com/

• http://people.sc.fsu.edu

• https://www.geeksforgeeks.org

• http://scikit-learn.org/

• https://machinelearningmastery.com 

https://stackabuse.com/
http://people.sc.fsu.edu/
https://www.geeksforgeeks.org/
http://scikit-learn.org/
https://machinelearningmastery.com/


tushar@tusharkute.com

      Thank you

This presentation is created using LibreOffice Impress 5.1.6.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in 

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies MITUSkillologies
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