
Decision Tree

Tushar B. Kute,
http://tusharkute.com

Lets see the example...

• Suppose a job seeker was deciding between several
offers, some closer or further from home, with various
levels of pay and benefits.

• He or she might create a list with the features of each
position. Based on these features, rules can be created to
eliminate some options.

• For instance, "if I have a commute longer than an hour,
then I will be unhappy", or "if I make less than $50k, I
won't be able to support my family."

• The difficult decision of predicting future happiness can
be reduced to a series of small, but increasingly specific
choices.

Decision tree

• Decision tree is a graph to represent choices
and their results in form of a tree.

• The nodes in the graph represent an event or
choice and the edges of the graph represent the
decision rules or conditions.

• It is mostly used in Machine Learning and Data
Mining applications using Python.

Understanding Decision tree

• As you might intuit from the name, decision tree
learners build a model in the form of a tree structure.

• The model itself comprises a series of logical
decisions, similar to a flowchart, with decision nodes
that indicate a decision to be made on an attribute.

• These split into branches that indicate the decision's
choices.

• The tree is terminated by leaf nodes (also known as
terminal nodes) that denote the result of following a
combination of decisions.

Decision tree – example

• Examples of use of decision tress is − predicting an
email as spam or not spam, predicting of a tumor is
cancerous or predicting a loan as a good or bad
credit risk based on the factors in each of these.

• Generally, a model is created with observed data
also called training data. Then a set of validation
data is used to verify and improve the model.

• For new set of predictor variable, we use this
model to arrive at a decision on the category (yes/
No, spam/not spam) of the data.

Few more applications

• Credit scoring models in which the criteria that
causes an applicant to be rejected need to be
well-specified

• Marketing studies of customer churn or
customer satisfaction that will be shared with
management or advertising agencies

• Diagnosis of medical conditions based on
laboratory measurements, symptoms, or rate of
disease progression

Divide and Conquer

• Decision trees are built using a heuristic called
recursive partitioning.

• This approach is generally known as divide and
conquer because it uses the feature values to split the
data into smaller and smaller subsets of similar classes.

• Beginning at the root node, which represents the
entire dataset, the algorithm chooses a feature that is
the most predictive of the target class.

• The examples are then partitioned into groups of
distinct values of this feature; this decision forms the
first set of tree branches.

Divide and Conquer

• To illustrate the tree building process, let's
consider a simple example.

• Imagine that you are working for a Hollywood
film studio, and your desk is piled high with
screenplays.

• Rather than read each one cover-to-cover, you
decide to develop a decision tree algorithm to
predict whether a potential movie would fall
into one of three categories: mainstream hit,
critic's choice, or box office bust.

Continuing...

• To gather data for your model, you turn to the studio
archives to examine th previous ten years of movie
releases.

• After reviewing the data for 30 different movie
scripts, a pattern emerges.

• There seems to be a relationship between the film's
proposed shooting budget, the number of A-list
celebrities lined up for starring roles, and the
categories of success.

• A scatter plot of this data might look something
like . . .

The scatterplot

Scatterplot – Phase:1

Scatterplot – Phase:2

The decision tree model

The C5.0 Algorithm

• There are numerous implementations of decision trees,
but one of the most well-known is the C5.0 algorithm.

• This algorithm was developed by computer scientist J.
Ross Quinlan as an improved version of his prior
algorithm, C4.5, which itself is an improvement over his
ID3 (Iterative Dichotomiser 3) algorithm.

• Although Quinlan markets C5.0 to commercial clients
(see http://www.rulequest.com/ for details), the source
code for a single-threaded version of the algorithm was
made publically available, and has therefore been
incorporated into programs such as R.

The C4.5 Algorithm

• To further confuse matters, a popular Java-
based open-source alternative to C4.5, titled
J48, is included in the RWeka package.

• Because the differences among C5.0, C4.5, and
J48 are minor, the principles in this
presentation will apply to any of these three
methods and the algorithms should be
considered synonymous.

The Decision tree algorithm

Example:

Example:

Gini index

• Gini index and information gain both of these methods are
used to select from the n attributes of the dataset which
attribute would be placed at the root node or the internal
node.

• Gini Index is a metric to measure how often a randomly
chosen element would be incorrectly identified.

• It means an attribute with lower gini index should be
preferred.

• Sklearn supports “gini” criteria for Gini Index and by default,
it takes “gini” value.

Entropy

• Entropy is the measure of uncertainty of a
random variable, it characterizes the impurity of
an arbitrary collection of examples. The higher
the entropy the more the information content.

Search for a good tree

• How should you go about building a decision tree?

• The space of decision trees is too big for systematic
search.

• Stop and

– return the a value for the target feature or

– a distribution over target feature values

• Choose a test (e.g. an input feature) to split on.

– For each value of the test, build a subtree for those
examples with this value for the test.

Top down induction

• A  the “best” decision attribute for next node

• Assign A as decision attribute for node

• For each value of A create new descendant

• Sort training examples to leaf node according to the

attribute value of the branch

• If all training examples are perfectly classified (same

value of target attribute) stop, else iterate over new

leaf nodes.

1. Which node to proceed with?

2. When to stop?

Choices

• When to stop
– no more input features

– all examples are classified the same

– too few examples to make an informative split

• Which test to split on
– split gives smallest error.

– With multi-valued features

– split on all values or

– split values into half.

Which attribute is best ?

A1=?

True False

[21+, 5-] [8+, 30-]

[29+,35-] A2=?

True False

[18+, 33-] [11+, 2-]

[29+,35-]

Principle Criterion

• Selection of an attribute to test at each node -
choosing the most useful attribute for classifying
examples.

• Information gain

– measures how well a given attribute separates the training
examples according to their target classification

– This measure is used to select among the candidate
attributes at each step while growing the tree

– Gain is measure of how much we can reduce
uncertainty (Value lies between 0,1)

Entropy

• A measure for

– uncertainty

– purity

– information content

• Information theory: optimal length code assigns (- log2p) bits to

message having probability p
• S is a sample of training examples

– p+ is the proportion of positive examples in S

– p- is the proportion of negative examples in S

• Entropy of S: average optimal number of bits to encode
information about certainty/uncertainty about S
Entropy(S) = p+(-log2p+) + p-(-log2p-) = -p+log2p+- p-log2p-

Entropy

• S is a sample of training examples

• p+ is the proportion of positive examples

• p- is the proportion of negative examples

• Entropy measures the impurity of S

Entropy(S) = -p+log2p+- p-log2 p-

• The entropy is 0 if the outcome
is ``certain”.

• The entropy is maximum if we
have no knowledge of the
system (or any outcome is
equally possible).

Information Gain

Gain(S,A): expected reduction in entropy due to partitioning S
on attribute A

A1=?

True False

[21+, 5-] [8+, 30-]

[29+,35-] A2=?

True False

[18+, 33-] [11+, 2-]

[29+,35-]

Gain(S,A)=Entropy(S) vvalues(A) |Sv|/|S| Entropy(Sv)

Entropy([29+,35-]) = -29/64 log2 29/64 – 35/64 log2 35/64

 = 0.99

Information Gain

A1=?

True False

[21+, 5-] [8+, 30-]

[29+,35-]

Entropy([21+,5-]) = 0.71
Entropy([8+,30-]) = 0.74
Gain(S,A1)=Entropy(S)
 -26/64*Entropy([21+,5-])

 -38/64*Entropy([8+,30-])

 =0.27

Entropy([18+,33-]) = 0.94

Entropy([8+,30-]) = 0.62

Gain(S,A2)=Entropy(S)

 -51/64*Entropy([18+,33-])

 -13/64*Entropy([11+,2-])

 =0.12

A2=?

True False

[18+, 33-] [11+, 2-]

[29+,35-]

Selecting next attribute

Humidity

High Normal

[3+, 4-] [6+, 1-]

S=[9+,5-]
E=0.940

Gain(S,Humidity)
=0.940-(7/14)*0.985
 – (7/14)*0.592
=0.151

E=0.985 E=0.592

Wind

Weak Strong

[6+, 2-] [3+, 3-]

S=[9+,5-]
E=0.940

Gain(S,Wind)
=0.940-(8/14)*0.811
 – (6/14)*1.0
=0.048

Humidity provides greater info. gain than Wind, w.r.t target classification.Humidity provides greater info. gain than Wind, w.r.t target classification.

Selecting next attribute

 Outlook

Sunny Rain

[2+, 3-] [3+, 2-]

S=[9+,5-]
E=0.940

Gain(S,Outlook)
=0.940-(5/14)*0.971
 -(4/14)*0.0 – (5/14)*0.0971
=0.247

E=0.971 E=0.971

Overcast

[4+, 0]

E=0.0

Selecting next attribute

The information gain values for the 4 attributes are:
• Gain(S,Outlook) =0.247

• Gain(S,Humidity) =0.151

• Gain(S,Wind) =0.048

• Gain(S,Temperature) =0.029

where S denotes the collection of training examples

Note: 0Log20 =0Note: 0Log20 =0

Packages needed

• Data Analytics
– sudo pip3 install pandas

• Decision Tree Algorithm
– sudo pip3 install sklearn

• Visualization
– sudo pip3 install ipython
– sudo pip3 install graphviz
– sudo pip3 install pydotplus
– sudo apt install graphviz

Hypothesis Space Search

• As per Tom Mitchell's,

• ".....For example, consider the space of hypotheses
that could in principle be output by the above
checkers learner. This hypothesis space consists of
all evaluation functions that can be represented by
some choice of values for the weights wo through
w6. The learner's task is thus to search through this
vast space to locate the hypothesis that is most
consistent with the available training examples....."

• Hence , Basically all possible combination of distinct
trees makes the hypothesis space.

Hypothesis Space Search

• Lets say if you have chosen to represent your
function to be a linear line then all possible
linear lines which go through the data (given
input, output) makes up your hypothesis space.

• Each tree= Single hypothesis , that says this tree
shall best fit my data and predict the correct
results.

• therefore combination of all such possible
tress= hypothesis space.

Hypothesis Space Search

Simplified Decision Tree

Decision Tree Classification

• We will predict whether a bank note is authentic
or fake depending upon the four different
attributes of the image of the note.

• The attributes are Variance of wavelet
transformed image, curtosis of the image,
entropy, and skewness of the image.

• Dataset:
– https://archive.ics.uci.edu/ml/datasets/bankn

ote+authentication

https://archive.ics.uci.edu/ml/datasets/banknote+authentication
https://archive.ics.uci.edu/ml/datasets/banknote+authentication

Dataset

Reading the dataset

Training the classifier

Splitting training and testing

X_train: (80%) y_train: (80%)

X_test: (20%) y_test: (20%)

train_test_split

• train_test_split(*arrays, **options)
– Split arrays or matrices into random train and

test subsets
– *arrays : sequence of indexables with same

length / shape[0]
• Allowed inputs are lists, numpy arrays, scipy-sparse

matrices or pandas dataframes.

– test_size : float, int, or None (default is None)
• If float, should be between 0.0 and 1.0 and represent

the proportion of the dataset to include in the test
split.

DecisionTreeClassifier

• DecisionTreeClassifier (criterion=’gini’, splitter=’best’,
max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=None, random_state=None,
max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, class_weight=None,
presort=False)

The fit function

• Fitting your model to (i.e. using the .fit() method on) the
training data is essentially the training part of the
modeling process. It finds the coefficients for the
equation specified via the algorithm being used.

• Then, for a classifier, you can classify incoming data points
(from a test set, or otherwise) using the predict method.
Or, in the case of regression, your model will
interpolate/extrapolate when predict is used on incoming
data points.

• It also should be noted that sometimes the "fit"
nomenclature is used for non-machine-learning methods,
such as scalers and other preprocessing steps.

Characterizing the classifier

Output

Confusion matrix

Classification Report

Accuracy Score

Visualizing the tree

Tree

CART

• Decision Trees are divided into Classification
and Regression Trees.

• Regression trees are needed when the response
variable is numeric or continuous.

• Classification trees, as the name implies are
used to separate the dataset into classes
belonging to the response variable.

CART

Classification Trees

Reference: Super Data Science

Classification Trees

Reference: Super Data Science

Regression Trees

Reference: Super Data Science

Regression Trees

Reference: Super Data Science

Example:

• Practical

Resources

• https://stackabuse.com/

• http://people.sc.fsu.edu

• https://www.geeksforgeeks.org

• http://scikit-learn.org/

• https://machinelearningmastery.com

https://stackabuse.com/
http://people.sc.fsu.edu/
https://www.geeksforgeeks.org/
http://scikit-learn.org/
https://machinelearningmastery.com/

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 5.1.6.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies MITUSkillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

