
Implementation of FIFO in C under Linux

Tushar B. Kute,
http://tusharkute.com

FIFO

• It is a named pipe, a method for passing information
from one computer process to other processes using
a pipe or message holding place that is given a
specific name. Unlike a regular pipe, a named pipe
can be used by processes that do not have to share a
common process origin and the message sent to the
named pipe can be read by any authorized process
that knows the name of the named pipe.
• A named pipe is sometimes called a "FIFO" (first in,

first out) because the first data written to the pipe is
the first data that is read from it.

Create FIFO using in Commands

• mkfifo filename

• mknod filename p

Pipe

Example:

Example:

Accessing a FIFO

• First, try reading the (empty) FIFO:

cat < my_fifo

• Now try writing to the FIFO. You will have to use a
different terminal because the first command will
now be hanging, waiting for some data to appear in
the FIFO.

echo “Hello World” > my_fifo

Accessing a FIFO

#include <sys/types.h>
#include <sys/stat.h>
int mkfifo(const char *filename, mode_t
mode);
int mknod(const char *filename, mode_t mode |
S_IFIFO, (dev_t) 0);

• Like the mknod and mkfifo command, you can use the
mknod function for making many special types of files.
Using a dev_t value of 0 and ORing the file access mode
with S_IFIFO is the only portable use of this function that
creates a named pipe.

Create a FIFO in C

#include<stdio.h>
#include<sys/types.h>
#include<sys/stat.h>
int main()
{

int res = mkfifo("myfifo", 0766);
if (res == 0)

printf("FIFO created...\n");
return(0);

}

Create a FIFO in C

Output

Opening a FIFO

• Unlike unnamed Pipe, FIFO needs to be
opened for reading and writing so the file
descriptors can be used alongwith it.

fd = open(const char *path, O_RDONLY);

fd = open(const char *path, O_WRONLY);

File descriptor

#include <unistd.h>
size_t write(int fildes, const void *buf,
size_t nbytes);

• It arranges for the first nbytes bytes from buf to be written
to the file associated with the file descriptor fildes.

• It returns the number of bytes actually written. This may be
less than nbytes if there has been an error in the file
descriptor. If the function returns 0, it means no data was
written; if it returns –1, there has been an error in the write
call.

The write system call

#include <unistd.h>
size_t read(int fildes, void *buf, size_t
nbytes);

• It reads up to nbytes bytes of data from the file
associated with the file descriptor fildes and places them
in the data area buf.

• It returns the number of data bytes actually read, which
may be less than the number requested. If a read call
returns 0, it had nothing to read; it reached the end of the
file. Again, an error on the call will cause it to return –1.

The read system call

• Implement full duplex communication between two
independent processes using FIFO. First process
accepts sentences and writes on one pipe to be
read by second process and second process counts
number of characters, number of words and
number of lines in accepted sentences, writes this
output in a text file and writes the contents of the
file on second pipe to be read by first process and
displays on standard output.

Problem Statement

How to do it?

FIFO-1Write sentences Read senteneces

FIFO-2Read file contents
and print on screen

Put into a file

Analyse the Sentences

Read a file at once

Write the contents

int fd,fd1;

 char * myfifo1 = "myfifo1";

 char * myfifo2 = "myfifo2";

 char buf[512];

 mkfifo(myfifo1, 0666);

 mkfifo(myfifo2, 0777);

 fd = open(myfifo1, O_WRONLY);

 write(fd, "Hello friends.. \nWelcome..\nI am Tushar B Kute", 55);

 printf("Data wrote in FIFO1 by writer\n");

 close(fd);

 fd1 = open(myfifo2, O_RDONLY);

 read(fd1, buf, sizeof(buf));

 printf("Data received by FIFO2 by writer\n");

 printf("%s",buf);

 close(fd1);

writer.c

pipe(file_pipe2); /* Second pipe created */

if (pipe(file_pipe1) == 0) /* first pipe created */

fork_result = fork(); /* Child process created */

if (fork_result == 0) {

write(file_pipe1[1], filename, strlen(filename));

printf("CHILD PROCESS: Wrote filename...\n");

read(file_pipe2[0], ch, 1024);

printf("CHILD PROCESS: Its contents are...\n %s", ch);

}

else {

read(file_pipe1[0], buffer, 10);

printf("PARENT PROCESS: Read filename %s ...\n", buffer);

fp = fopen(buffer,"r");

while(!feof(fp)) {

ch[count] = fgetc(fp);

count++;

}

fclose(fp);

write(file_pipe2[1], ch, strlen(ch));

printf("PARENT PROCESS: The Contents are written ...\n");

reader.c

Output

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 7.0.1.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies MITUSkillologies

	Formal Template
	Example Bullet Point Slide
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

