

Rules of Inference and Natural Deduction

Tushar B. Kute, http://tusharkute.com

skillologies

Inference

Inference:

- In artificial intelligence, we need intelligent computers which can create new logic from old logic or by evidence, so generating the conclusions from evidence and facts is termed as Inference.
- Inference rules:
 - Inference rules are the templates for generating valid arguments.
 - Inference rules are applied to derive proofs in artificial intelligence, and the proof is a sequence of the conclusion that leads to the desired goal.

Inference

- In inference rules, the implication among all the connectives plays an important role. Following are some terminologies related to inference rules:
 - Implication: It is one of the logical connectives which can be represented as P → Q. It is a Boolean expression.
 - Converse: The converse of implication, which means the right-hand side proposition goes to the left-hand side and vice-versa. It can be written as Q → P.
 - Contrapositive: The negation of converse is termed as contrapositive, and it can be represented as ¬ Q → ¬ P.
 - Inverse: The negation of implication is called inverse. It can be represented as ¬ P → ¬ Q.

Inference

 From the above term some of the compound statements are equivalent to each other, which we can prove using truth table:

Р	Q	P→Q	$Q \rightarrow P$	$\neg \ Q \to \neg \ P$	$\neg P \rightarrow \neg Q.$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т
F	Т	Т	F	Т	F
F	F	Т	Т	Т	Т

 Hence from the above truth table, we can prove that P → Q is equivalent to ¬ Q → ¬ P, and Q → P is equivalent to ¬ P → ¬ Q.

 The Modus Ponens rule is one of the most important rules of inference, and it states that if P and P → Q is true, then we can infer that Q will be true. It can be represented as:

Notation for Modus ponens:
$$\frac{P \rightarrow Q, P}{\therefore Q}$$

• Example:

Statement-1: "If I am sleepy then I go to bed" ==> P→ Q Statement-2: "I am sleepy" ==> P

Conclusion: "I go to bed." ==> Q.
 Hence, we can say that, if P→ Q is true and P is true then Q will be true.

• Proof by Truth table:

Р	Q	$P \rightarrow Q$
0	0	0
0	1	1
1	0	0
1	1	1 🔶

- Modus Tollens:
- The Modus Tollens rule state that if P→ Q is true and ¬ Q is true, then ¬ P will also true. It can be represented as:

Notation for Modus Tollens: $\frac{P \rightarrow Q, \quad \sim Q}{\sim P}$

Statement-1: "If I am sleepy then I go to bed" ==> $P \rightarrow Q$

- Statement-2: "I do not go to the bed."==> ~Q
- Statement-3: Which infers that "I am not sleepy" => ~P

Р	Q	$\sim P$	$\sim Q$	$P \rightarrow Q$
0	0	1	1	1 🔶
0	1	1	0	1
1	0	0	1	0
1	1	0	0	1

- Hypothetical Syllogism:
- The Hypothetical Syllogism rule state that if P→R is true whenever P→Q is true, and Q→R is true. It can be represented as the following notation:
- Example:

Statement-1: If you have my home key then you can unlock my home. $P \rightarrow Q$

Statement-2: If you can unlock my home then you can take my money. $Q \rightarrow R$

Conclusion: If you have my home key then you can take my money. $P \rightarrow R$

Р	Q	R	P ightarrow Q	$Q \rightarrow R$	$P \rightarrow$	R
0	0	0	1	1	1 .	•
0	0	1	1	1	1 ·	•
0	1	0	1	0	1	
0	1	1	1	1	1	•
1	0	0	0	1	1	
1	0	1	0	1	1	
1	1	0	1	0	0	
1	1	1	1	1	1 .	•

- Disjunctive Syllogism:
- The Disjunctive syllogism rule state that if PvQ is true, and ¬P is true, then Q will be true. It can be represented as:

Notation of Disjunctive syllogism: $\frac{P \lor Q, \neg P}{Q}$

• Example:

Statement-1: Today is Sunday or Monday. ==>PvQ Statement-2: Today is not Sunday. ==> ¬P Conclusion: Today is Monday. ==> Q

Р	Q	¬ P	$P \lor Q$
0	0	1	0
0	1	1	1 🔶
1	0	0	1
1	1	0	1

- Addition:
- The Addition rule is one the common inference rule, and it states that If P is true, then PvQ will be true.

• Example:

Statement: I have a vanilla ice-cream. ==> P

Statement-2: I have Chocolate ice-cream.

Conclusion: I have vanilla or chocolate ice-cream. ==> (PvQ)
 Proof by Truth-Table:

Р	Q		$P \lor Q$
0	0	0	
1	0	1	4
0	1	1	
1	1	1	•

- Simplification:
- The simplification rule state that if PAQ is true, then Q or P will also be true. It can be represented as:

Notation of Simplification rule: $\frac{P \land Q}{Q}$ Or $\frac{P \land Q}{P}$

• Proof by Truth-Table:

Р	Q	$P \wedge Q$
0	0	0
1	0	0
0	1	0
1	1	1 4

 The Resolution rule state that if PvQ and ¬PAR is true, then QvR will also be true. It can be represented as

Notation of Resolution $\frac{P \lor Q, \neg P \land R}{Q \lor R}$

• Proof by Truth-Table:

Р	⇒ P	Q	R	$P \lor Q$	¬ P∧R	$Q \lor R$
0	1	0	0	0	0	0
0	1	0	1	0	0	1
0	1	1	0	1	1	1 🔶
0	1	1	1	1	1	1 🗲
1	0	0	0	1	0	0
1	0	0	1	1	0	1
1	0	1	0	1	0	1
1	0	1	1	1	0	1 🔸

Natural Deduction

- Normal human reasoning is generally a train of thought moving linearly from the premises to the conclusion.
- This natural process is mimicked by the "Natural" Deduction Method of Propositional Logic (also called Propositional Calculus, abbreviated PC).
- This method in PC is what is used in mathematics proofs.

Natural Deduction

- A Natural Deduction proof in PC is a sequence of wffs beginning with one or more wffs as premises; fresh premises may be added at any point in the course of a proof.
- New wffs are generated by applying "rules" to any wff or a group of wffs that have already occurred in the sequence.
- This means a Natural Deduction system has two aspects: A set of rules and a method for applying the rules. Thus it is similar to the procedure of deriving theorems in mathematics.
- So we turn the situation around and say that all mathematics proofs are instances of Natural Deduction.

Replacement Rules

De Morgan's Theorem (DM)	$\begin{array}{l} \sim (p \land q) \Leftrightarrow (\sim p \lor \sim q) \\ \sim (p \lor q) \Leftrightarrow (\sim p \land \sim q) \end{array}$
Commutation (Com.)	$\begin{array}{l} (p \lor q) \Leftrightarrow (q \lor p) \\ p \land q \Leftrightarrow q \land p \end{array}$
Association (Assoc.)	$ \begin{array}{l} [(p \lor q) \lor r] \Leftrightarrow [p \lor (q \lor r)] \\ [p \land (q \land r)] \Leftrightarrow [(p \land q) \land r] \end{array} $
Distribution (Dist.)	$ \begin{array}{l} [p \land (q \lor r)] \Leftrightarrow [(p \land q) \lor (p \land r)] \\ [p \lor (q \land r)] \Leftrightarrow [(p \lor q) \land (p \lor r)] \end{array} $
Double Negation (DN)	$p \Leftrightarrow \sim \sim p$
Material Implication (M. Imp.)	$(p \Rightarrow q) \Leftrightarrow ({\sim} p \lor q)$
Transposition (Trans.)	$(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$
Material Equivalence (M. Equiv.)	$\begin{array}{l} (p \Leftrightarrow q) \Leftrightarrow [(p \Rightarrow q) \land (q \Rightarrow p)] \\ (p \Leftrightarrow q) \Leftrightarrow [(p \land q) \lor (\sim p \land \sim q)] \end{array}$
Law of Exportation	$[(p \land q) \Rightarrow r] \Leftrightarrow [(p \Rightarrow (q \Rightarrow r)]$

Thank you

This presentation is created using LibreOffice Impress 7.0.1.2, can be used freely as per GNU General Public License

Web Resources https://mitu.co.in http://tusharkute.com

contact@mitu.co.in
tushar@tusharkute.com