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Statistical Data Analysis

• Statistical data analysis is a procedure of 
performing various statistical operations. 

• It is a kind of quantitative research, which seeks 
to quantify the data, and typically, applies some 
form of statistical analysis. 

• Quantitative data basically involves descriptive 
data, such as survey data and observational 
data.



Qualitative Data Type

• Qualitative or Categorical Data describes the 
object under consideration using a finite set of 
discrete classes. 

• It means that this type of data can’t be counted 
or measured easily using numbers and 
therefore divided into categories. 

• The gender of a person (male, female, or 
others) is a good example of this data type. 



Qualitative Data Type

• These are usually extracted from audio, images, or 
text medium. 

• Another example can be of a smartphone brand that 
provides information about the current rating, the 
color of the phone, category of the phone, and so on. 

• All this information can be categorized as Qualitative 
data. There are two subcategories under this:
– Nominal
– Ordinal



Nominal 

• These are the set of values that don’t possess a natural 
ordering. 

• Example: The color of a smartphone can be considered 
as a nominal data type as we can’t compare one color 
with others.

• It is not possible to state that ‘Red’ is greater than ‘Blue’. 

• The gender of a person is another one where we can’t 
differentiate between male, female, or others. 

• Mobile phone categories whether it is midrange, budget 
segment, or premium smartphone is also nominal data 
type.



Ordinal 

• These types of values have a natural ordering 
while maintaining their class of values. 

• If we consider the size of a clothing brand then 
we can easily sort them according to their name 
tag in the order of small < medium < large. 

• The grading system while marking candidates in 
a test can also be considered as an ordinal data 
type where A+ is definitely better than B grade. 



Ordinal 

• These categories help us deciding which encoding 
strategy can be applied to which type of data. 

• Data encoding for Qualitative data is important because 
machine learning models can’t handle these values 
directly and needed to be converted to numerical types 
as the models are mathematical in nature.

• For nominal data type where there is no comparison 
among the categories, one-hot encoding can be applied 
which is similar to binary coding considering there are in 
less number and for the ordinal data type, label encoding 
can be applied which is a form of integer encoding.



Quantitative Data Type

• This data type tries to quantify things and it does 
by considering numerical values that make it 
countable in nature. 

• The price of a smartphone, discount offered, 
number of ratings on a product, the frequency of 
processor of a smartphone, or ram of that 
particular phone, all these things fall under the 
category of Quantitative data types. 



Quantitative Data Type

• The key thing is that there can be an infinite 
number of values a feature can take. 

• For instance, the price of a smartphone can vary 
from x amount to any value and it can be further 
broken down based on fractional values. 

• The two subcategories which describe them clearly 
are:

– Discrete

– Continuous



Discrete 

• The numerical values which fall under are integers 
or whole numbers are placed under this category. 

• The number of speakers in the phone, cameras, 
cores in the processor, the number of sims 
supported all these are some of the examples of 
the discrete data type.



Continous 

• The fractional numbers are considered as 
continuous values. 

• These can take the form of the operating frequency 
of the processors, the android version of the 
phone, wifi frequency, temperature of the cores, 
and so on. 



Summary 



Types of variables

• In research, variables are any characteristics that can take on 
different values, such as height, age, species, or exam score.

• In scientific research, we often want to study the effect of 
one variable on another one. For example, you might want 
to test whether students who spend more time studying get 
better exam scores.

• The variables in a study of a cause-and-effect relationship 
are called the independent and dependent variables.

– The independent variable is the cause. Its value is 
independent of other variables in your study.

– The dependent variable is the effect. Its value depends 
on changes in the independent variable.



Types of variables



Example:

• You are studying the impact of a new medication on 
the blood pressure of patients with hypertension.

• To test whether the medication is effective, you 
divide your patients into two groups. One group takes 
the medication, while the other group takes a sugar 
pill placebo.

– Your independent variable is the treatment that 
you vary between groups: which type of pill the 
patient receives.

– Your dependent variable is the outcome that you 
measure: the blood pressure of the patients.



Example:



Example:  

• Imagine that a tutor asks 100 students to complete a 
maths test. The tutor wants to know why some students 
perform better than others. Whilst the tutor does not 
know the answer to this, she thinks that it might be 
because of two reasons: 
– (1) some students spend more time revising for their test; and (2) 

some students are naturally more intelligent than others. As 
such, the tutor decides to investigate the effect of revision time 
and intelligence on the test performance of the 100 students.

• Dependent Variable: Test Mark (measured from 0 to 100)
• Independent Variables: Revision time (measured in hours) 

Intelligence (measured using IQ score)



Other names for independent variables

• Sometimes, the variable you think is the cause 
might not be fully independent – it might be 
influenced by other variables. In this case, one of 
these terms is more appropriate:
– Explanatory variables (they explain an event 

or outcome)
– Predictor variables (they can be used to 

predict the value of a dependent variable)
– Right-hand-side variables (they appear on the 

right-hand side of a regression equation).



Other names for dependent variables

• Dependent variables are also known by these 
terms:
– Response variables (they respond to a change 

in another variable)
– Outcome variables (they represent the 

outcome you want to measure)
– Left-hand-side variables (they appear on the 

left-hand side of a regression equation)



Univatiate Data

• This type of data consists of only one variable. 

• The analysis of univariate data is thus the 
simplest form of analysis since the information 
deals with only one quantity that changes. 

• It does not deal with causes or relationships and 
the main purpose of the analysis is to describe 
the data and find patterns that exist within it. 

• The example of a univariate data can be height.



Univatiate Data



Univatiate Data

• Suppose that the heights of seven students of a class 
is recorded, there is only one variable that is height 
and it is not dealing with any cause or relationship. 

• The description of patterns found in this type of data 
can be made by drawing conclusions using central 
tendency measures (mean, median and mode), 
dispersion or spread of data (range, minimum, 
maximum, quartiles, variance and standard 
deviation) and by using frequency distribution tables, 
histograms, pie charts, frequency polygon and bar 
charts.



Bivatiate Data

• This type of data involves two different 
variables. 

• The analysis of this type of data deals with 
causes and relationships and the analysis is 
done to find out the relationship among the 
two variables.

• Example of bivariate data can be temperature 
and ice cream sales in summer season.



Bivatiate Data



Bivatiate Data

• Suppose the temperature and ice cream sales are the 
two variables of a bivariate data. 

• Here, the relationship is visible from the table that 
temperature and sales are directly proportional to each 
other and thus related because as the temperature 
increases, the sales also increase. 

• Thus bivariate data analysis involves comparisons, 
relationships, causes and explanations. 

• These variables are often plotted on X and Y axis on the 
graph for better understanding of data and one of these 
variables is independent while the other is dependent.



Multivatiate Data

• When the data involves three or more variables, 
it is categorized under multivariate. 

• Example of this type of data is suppose an 
advertiser wants to compare the popularity of 
four advertisements on a website, then their 
click rates could be measured for both men and 
women and relationships between variables can 
then be examined.



Multivatiate Data

• It is similar to bivariate but contains more than 
one dependent variable. 

• The ways to perform analysis on this data 
depends on the goals to be achieved.Some of 
the techniques are regression analysis,path 
analysis,factor analysis and multivariate analysis 
of variance (MANOVA).



Regression?

• Regression analysis is a statistical method that 
helps us to analyse and understand the 
relationship between two or more variables of 
interest. 

• The process that is adapted to perform 
regression analysis helps to understand which 
factors are important, which factors can be 
ignored and how they are influencing each 
other.



Regression?

• For the regression analysis is be a successful 
method, we understand the following terms:
– Dependent Variable: This is the variable that 

we are trying to understand or forecast.
– Independent Variable: These are factors that 

influence the analysis or target variable and 
provide us with information regarding the 
relationship of the variables with the target 
variable.



Linear Regression



Example:



Example:



Regression 

• In regression, we normally have one dependent variable 
and one or more independent variables. 

• Here we try to “regress” the value of dependent 
variable “Y” with the help of the independent variables. 

• In other words, we are trying to understand, how does 
the value of ‘Y’ change w.r.t change in ‘X’.



Uses of Regression

• Regression analysis is used for prediction and forecasting. This 
has a substantial overlap to the field of machine learning. This 
statistical method is used across different industries such as,
– Financial Industry- Understand the trend in the stock prices, 

forecast the prices, evaluate risks in the insurance domain
– Marketing- Understand the effectiveness of market 

campaigns, forecast pricing and sales of the product. 
– Manufacturing- Evaluate the relationship of variables that 

determine to define a better engine to provide better 
performance

– Medicine- Forecast the different combination of medicines 
to prepare generic medicines for diseases.



Terminologies

• Outliers 
– Suppose there is an observation in the 

dataset that has a very high or very low value 
as compared to the other observations in the 
data, i.e. it does not belong to the population, 
such an observation is called an outlier. 

– In simple words, it is an extreme value. An 
outlier is a problem because many times it 
hampers the results we get.



Terminologies

• Multicollinearity
– When the independent variables are highly 

correlated to each other, then the variables are 
said to be multicollinear. 

– Many types of regression techniques assume 
multicollinearity should not be present in the 
dataset. 

– It is because it causes problems in ranking 
variables based on its importance, or it makes the 
job difficult in selecting the most important 
independent variable.



Terminologies

• Heteroscedasticity
–When the variation between the target variable and the 

independent variable is not constant, it is called 
heteroscedasticity. 

– Example-As one’s income increases, the variability of 
food consumption will increase. 

– A poorer person will spend a rather constant amount by 
always eating inexpensive food; a wealthier person may 
occasionally buy inexpensive food and at other times, 
eat expensive meals. 

– Those with higher incomes display a greater variability of 
food consumption.



Terminologies

• When we use unnecessary explanatory 
variables, it might lead to overfitting. 

• Overfitting means that our algorithm works 
well on the training set but is unable to perform 
better on the test sets. It is also known as a 
problem of high variance.

• When our algorithm works so poorly that it is 
unable to fit even a training set well, then it is 
said to underfit the data. It is also known as a 
problem of high bias.



Terminologies



Types of Regression

• Linear Regression

• Multiple Regression

• Logistic Regression

• Polynomial Regression

• Regularized Models
– Ridge Regression
– Lasso Regression
– ElasticNet Regression

• Outlier Based Model
– RANSAC 



Linear Regression

• The simplest of all regression types is Linear Regression 
where it tries to establish relationships between 
Independent and Dependent variables. 

• The Dependent variable considered here is always a 
continuous variable.

• Linear Regression is a predictive model used for finding 
the linear relationship between a dependent variable 
and one or more independent variables.



Linear Regression

• Here, ‘Y’ is our dependent variable, which is a 
continuous numerical and we are trying to understand 
how does ‘Y’ change with ‘X’.

• So, if we are supposed to answer, the above question of 
“What will be the GRE score of the student, if his CCGPA 
is 8.32?” our go to option should be linear regression.



Simple Linear Regression

• As the model is used to predict the dependent 
variable, the relationship between the variables can be 
written in the below format.

Yi = β0 + β1Xi +εi

• Where,

– Yi – Dependent variable

– β0 — Intercept

– β1 – Slope Coefficient

– Xi – Independent Variable

– εi – Random Error Term



Simple Linear Regression

• The main factor that is considered as part of Regression 
analysis is understanding the variance between the variables. 
For understanding the variance, we need to understand the 
measures of variation.
– SST = total sum of squares (Total Variation)
• Measures the variation of the Y i values around their 

mean Y
– SSR = regression sum of squares (Explained Variation)
• Variation attributable to the relationship between X and 

Y
– SSE = error sum of squares (Unexplained Variation)
• Variation in Y attributable to factors other than X



Polynomial Regression

• This type of regression technique is used to model 
nonlinear equations by taking polynomial functions 
of independent variables.

• In the figure given below, you can see the red curve 
fits the data better than the green curve. 

• Hence in the situations where the relationship 
between the dependent and independent variable 
seems to be non-linear, we can deploy Polynomial 
Regression Models.



Polynomial Regression



Multiple Linear Regression

• Multiple linear regression is used to estimate the 
relationship between two or more independent variables 
and one dependent variable. You can use multiple linear 
regression when you want to know:
– How strong the relationship is between two or more 

independent variables and one dependent variable 
(e.g. how rainfall, temperature, and amount of 
fertilizer added affect crop growth).

– The value of the dependent variable at a certain value 
of the independent variables (e.g. the expected yield 
of a crop at certain levels of rainfall, temperature, and 
fertilizer addition).



Multiple Linear Regression – Ex.

• You are a public health researcher interested in 
social factors that influence heart disease. 

• You survey 500 towns and gather data on the 
percentage of people in each town who smoke, the 
percentage of people in each town who bike to 
work, and the percentage of people in each town 
who have heart disease.

• Because you have two independent variables and 
one dependent variable, and all your variables are 
quantitative, you can use multiple linear regression 
to analyze the relationship between them.



Assumptions

• Multiple linear regression makes all of the same 
assumptions as simple linear regression:

• Homogeneity of variance (homoscedasticity): 
the size of the error in our prediction doesn’t 
change significantly across the values of the 
independent variable.

• Independence of observations: the observations 
in the dataset were collected using statistically 
valid methods, and there are no hidden 
relationships among variables.



Assumptions

• In multiple linear regression, it is possible that some of 
the independent variables are actually correlated with 
one another, so it is important to check these before 
developing the regression model. 

• If two independent variables are too highly correlated 
(r2 > ~0.6), then only one of them should be used in 
the regression model.

• Normality: The data follows a normal distribution.

• Linearity: the line of best fit through the data points is 
a straight line, rather than a curve or some sort of 
grouping factor.



How to perform?

• The formula for a multiple linear regression is:

– y = the predicted value of the dependent variable

– B0 = the y-intercept (value of y when all other parameters are set to 0)

– B1X1= the regression coefficient (B1) of the first independent variable 
(X1) (a.k.a. the effect that increasing the value of the independent 
variable has on the predicted y value)

– … = do the same for however many independent variables you are 
testing

– BnXn = the regression coefficient of the last independent variable

– e = model error (a.k.a. how much variation there is in our estimate of 
y)



How to perform?

• To find the best-fit line for each independent variable, 
multiple linear regression calculates three things:
– The regression coefficients that lead to the smallest 

overall model error.
– The t-statistic of the overall model.
– The associated p-value (how likely it is that the t-

statistic would have occurred by chance if the null 
hypothesis of no relationship between the 
independent and dependent variables was true).

• It then calculates the t-statistic and p-value for each 
regression coefficient in the model.



Performance Evaluation

• The performance of a regression model can be 
understood by knowing the error rate of the 
predictions made by the model. 

• You can also measure the performance by knowing 
how well your regression line fit the dataset.

• A good regression model is one where the 
difference between the actual or observed values 
and predicted values for the selected model is 
small and unbiased for train, validation and test 
data sets.



Performance Evaluation

• To measure the performance of your regression 
model,  some statistical metrics are used. Here 
we will discuss four of the most popular 
metrics. They are-
– Mean Absolute Error(MAE)
– Root Mean Square  Error(RMSE)
– Coefficient of determination or R2
– Adjusted R2



Mean Absolute Error

• This is the simplest of all the metrics. It is 
measured by taking the average of the absolute 
difference between actual values and the 
predictions.



Example:



Example:



Example:



Mean Absolute Error



Mean Absolute Error



Mean Absolute Error

• Mean Absolute Error (MAE) tells us the average error in 
units of y, the predicted feature. A value of 0 indicates a 
perfect fit, i.e. all our predictions are spot on. 

• The MAE has a big advantage in that the units of the 
MAE are the same as the units of y, the feature we want 
to predict. 

• In the example above, we have an MAE of 8.5, so it 
means that on average our predictions of the number of 
machine failures are incorrect by 8.5 machine failures. 

• This makes MAE very intuitive and the results are easily 
conveyed to a non-machine learning expert!



Root Mean Square Error

• The Root Mean Square Error is measured by 
taking the square root of the average of the 
squared difference between the prediction and 
the actual value. 

• It represents the sample standard deviation of 
the differences between predicted values and 
observed values(also called residuals).



Root Mean Square Error



RMSE

• As with MAE, we can think of RMSE as being 
measured in the y units. 

• So the above error can be read as an error of 9.9 
machine failures on average per observation.



MAE vs. RMSE

• Compared to MAE, RMSE gives a higher total error and the 
gap increases as the errors become larger. It penalizes a 
few large errors more than a lot of small errors. If you want 
your model to avoid large errors, use RMSE over MAE.

• Root Mean Square Error (RMSE) indicates the average error 
in units of y, the predicted feature, but penalizes larger 
errors more severely than MAE. A value of 0 indicates a 
perfect fit. 

• You should also be aware that as the sample size increases, 
the accumulation of slightly higher RMSEs than MAEs 
means that the gap between these two measures also 
increases as the sample size increases.



R2 Error

• It measures how well the actual outcomes are 
replicated by the regression line. 

• It helps you to understand how well the 
independent variable adjusted with the variance 
in your model. 

• That means how good is your model for a 
dataset. The mathematical representation for 
R2 is-



R2 Error

• Here, 
– SSR = Sum Square of Residuals(the squared 

difference between the predicted and the 
average value)

– SST = Sum Square of Total(the squared 
difference between the actual and average 
value)



Example:

You can see that the regression line fits the data better than the mean line, which is what we 
expected (the mean line is a pretty simplistic model, after all). But can you say how much 
better it is? That's exactly what R2 does! Here is the calculation.



Example: 



R2 Error

• The additional parts to the calculation are the 
column on the far right (in blue) and the final 
calculation row, computing  R2

• So we have an R-squared of 0.85. Without even 
worrying about the units of y we can say this is a 
decent model. Why? Because the model explains 
85% of the variation in the data. That's exactly what 
an R-squared of 0.85 tells us!

• R-squared (R2) tells us the degree to which the model 
explains the variance in the data. In other words, how 
much better it is than just predicting the mean. 



Example:

• Here's another example. What if our data points and 
regression line looked like this?

• The variance around the regression line is 0. In other 
words, var(line) is 0. There are no errors.



Now,

• Now, remember that the formula for R-squared 
is:

•

• So, with var(line) = 0 the above calculation for R-
squared is

• So, if we have a perfect regression line, with no 
errors, we get an R-squared of 1.



R2 Error

• Let's look at another example. What if our data points and 
regression line looked like this, with the regression line equal to 
the mean line?

• Data points where the regression line is equal to the mean line

• In this case, var(line) and var(mean) are the same. So the above 
calculation will yield an R-squared of 0:



R2 Error

• What if our regression line was really bad, worse than the mean line?

• It's unlikely to get this bad! But if it does, var(mean)-var(line) will be 
negative, so R-squared will be negative.

• An R-squared of 1 indicates a perfect fit. An R-squared of 0 indicates 
a model no better or worse than the mean. An R-squared of less 
than 0 indicates a model worse than just predicting the mean.



Adjusted R2 Error

• Adjusted R-Squared is a modified form of R-Squared 
whose value increases if new predictors tend to 
improve models performance and decreases if new 
predictors does not improve performance as 
expected. 

• R-squared is a comparison of Residual sum of 
squares (SSres) with total sum of squares(SStot). 

• It is calculated by dividing sum of squares of 
residuals from the regression model by total sum of 
squares of errors from the average model and then 
subtract it from 1.



Adjusted R2 Error

• Unlike R-squared, the Adjusted R-squared 
would penalize you for adding features which 
are not useful for predicting the target. 

• It takes into account the number of 
independent variables used for predicting the 
target variable.



Adjusted R2 Error

• where,
– N = number of records in the data set.
– p = number of independent variables.



Adjusted R2 Error

•  For a simple representation, you can rewrite the 
above formula like the following:

Adjusted R-squared = 1 — (x * y)

where,

    x = 1 — R Squared

    y = (N-1) / (n-p-1)

• Adjusted R-squared can be negative when R-squared 
is close to zero.

• Adjusted R-squared value always be less than or 
equal to R-squared value. 



Mean Absolute Percentage Error (MAPE)

• The mean absolute percentage error (MAPE) is 
a measure of how accurate a forecast system is. 

• It measures this accuracy as a percentage, and 
can be calculated as the average absolute 
percent error for each time period minus actual 
values divided by actual values. 



Mean Absolute Percentage Error (MAPE)

• Where:
– n is the number of fitted points,

– At is the actual value,

– Ft is the forecast value.

– Σ is summation notation (the absolute value 
is summed for every forecasted point in 
time).



Summary 

• Mean Absolute Error (MAE) tells us the average error in units 
of y, the predicted feature. A value of 0 indicates a perfect fit. 

• Root Mean Square Error (RMSE) indicates the average error in 
units of y, the predicted feature, but penalizes larger errors 
more severely than MAE. A value of 0 indicates a perfect fit. 

• R-squared (R2) tells us the degree to which the model explains 
the variance in the data. In other words how much better it is 
than just predicting the mean. 
– A value of 1 indicates a perfect fit.
– A value of 0 indicates a model no better than the mean. 
– A value less than 0 indicates a model worse than just 

predicting the mean.



tushar@tusharkute.com

      Thank you
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