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What is Probability?

* Probability is a measure of the likelihood of a
random phenomenon or chance behavior.

* Probability describes the long-term proportion with
which a certain outcome will occur in situations
with short-term uncertainty.

* Example:

— Simulate flipping a coin 100 times. Plot the
proportion of heads against the number of flips.
Repeat the simulation.
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Probability

* Probability deals with experiments that yield
random short-term results or outcomes, yet
reveal long-term predictability.

* The long-term proportion with which a certain
outcome is observed is the probability of that
outcome.
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Law of large numbers

* As the number of repetitions of a probability
experiment increases, the proportion with
which a certain outcome is observed gets closer
to the probability of the outcome.
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Probability and event

* In probability, an experiment is any process that can
be repeated in which the results are uncertain.

- A simple event is any single outcome from a
probability experiment. Each simple event is denoted
e

* The sample space, S, of a probability
experiment is the collection of all possible
simple events. In other words, the sample space
is a list of all possible outcomes of a probability
experiment.
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The event

* An event is any collection of outcomes
from a probability experiment.

* An event may consist of one or more
simple events.

* Events are denoted using capital letters
such as E.
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Example:

* Consider the probability experiment of
having two children.

* (a) Identify the simple events of the
probability experiment.

* (b) Determine the sample space.

* (c) Define the event E = “have one boy".
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Denoting probability

* The probability of an event, denoted
P(E), is the likelihood of that event
occurring.
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Properties of probabilities

* The probability of any event E, P(E), must be between 0
and 1 inclusive. That s,

0<P(E) <.

* IFan event is impossible, the probability of the event is 0.
* |F an event is a certainty, the probability of the event is 1.
- IFS={e, e, ..., e}, then

P(e,) + P(e)) + ... + P(e) = 1.
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Unusual Event

* An unusual event is an event that has a
low probability of occurring.
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Method of probability

* Three methods for determining the
probability of an event:

(1) the classical method
(2) the empirical method
(3) the subjective method
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Dependence and Independence

* Roughly speaking, we say that two events E and F are
dependent if knowing something about whether E
happens gives us information about whether F happens
(and vice versa). Otherwise they are independent.

* Forinstance, if we flip a fair coin twice, knowing whether
the first flip is Heads gives us no information about
whether the second flip is Heads. These events are
independent. On the other hand, knowing whether the
First flip is Heads certainly gives us information about
whether both flips are Tails. (If the First flip is Heads, then
definitely it's not the case that both flips are Tails.) These
two events are dependent.
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Dependence and Independence

* Mathematically, we say that two events E and F are
independent if the probability that they both
happen is the product of the probabilities that each
one happens:

P(E, F) = P(E)P(F)

* |In the example above, the probability of “First Flip
Heads" is 1/2, and the probability of “both flips Tails"
is 1/4, but the probability of “First Flip Heads and
both flips Tails"” is 0.

{:\\ tusharkute
SIS S— L0m




Conditional Probability

* When two events E and F are independent, then
by definition we have:

P(E, I) = P(E)P(F)

If they are not necessarily independent (and if
the probability of F is not zero), then we define
the probability of E “conditional on F” as:

P(E | F) = P(E, F)/ P(F)
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Conditional Probability

* You should think of this as the probability that E
happens, given that we know that F happens.

* We often rewrite this as:
P(E, F) = P(E | F)P(F)

 When E and F are independent, you can check
that this gives:

P(E | F) = P(E)
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Example:

* One common tricky example involves a fFamily
with two (unknown) children.

* |F we assume that:
1. Each child is equally likely to be a boy or a girl

2. The gender of the second child is
independent of the gender of the first child

then the event “no girls” has probability 1/4, the
event “one girl, one boy"” has probability 1/2, and
the event “two girls” has probability 1/4.
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Example:

* Now we can ask what is the probability of the
event “both children are girls” (B) conditional on
the event “the older child is a girl” (G)? Using the
definition of conditional probability:

P(B|G)=P(B, G)/P(G)=PB)/P(G)=1/2

* since the event B and G ("both children are girls
and the older child is a girl”) is just the event B.
(Once you know that both children are girls, it's
necessarily true that the older child is a girl.)
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Example:

* We could also ask about the probability of the event “both
children are girls” conditional on the event “at least one of

the children is a girl” (L). Surprisingly, the answer is different
from before!

* As before, the event B and L (“both children are girls and at
least one of the children is a girl”) is just the event B. This
means we have:

P(B!L)=PB, L)/ P(L)=P(B)/P(L) = 1/3

* How can this be the case? Well, if all you know is that at least
one of the children is a girl, then it is twice as likely that the
Family has one boy and one girl than that it has both girls.
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Bayes Theorem
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Defective Spanners
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Bayes Theorem

What's the probability?
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Bayes Theorem

P(B|A) * P(A)
P(B)

P(A|B) =
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Bayes Theorem

Mach1: 30 wrenches / hr -> P(Mach1)=30/50 = 0.6
Mach2: 20 wrenches / hr -> P(Mach2)=20/50 = 0.4
Out of all produced parts:

We can SEE that 1% are defective -> P(Defect) = 1%

\?v:t::: ggE that‘."-':)g:. crt:.l.ne from mach1 S IVE EEer
And 50% came from mach2 > P(Mach2 | Defect)=50%
Question:

What is the probability that a part

produced by mach2 is defective = ? -> P(Defect | Mach2)=?
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Bayes Theorem

P(Mach2 | Defect) * P(Defect)

P(Defect | Mach2) =
P(Mach2)
- *  0.01
P(Defect | Mach2) = T ooras
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That's intuitive

it o EINBGIA Bt BRSO,
( | Mach2) T

Let’s look at an example:

1000 wrenches

400 came from Mach2

1% have a defect=10

of them 50% came from Mach2=5

% defective parts from Mach2 = 5/400 = 1.25%
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Exercise

Quick exercise:

P(Defect | Mach1)=?
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P(B|A) * P(A)
P(B)

P(A|B) =

P(Walks|X) = 2
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Likelihood S
Posterior Probability H l m ; obaBiE)

P(X|\Walks) * P(Walks
P(Walks|X) = (X1 ) * P( )

P(X)
E Ma'> Likelihood
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Likelihood Prior Probabilit
Posterior Probability H l E ; robability

P(X|Drives) * P(Drives
P(Drives|X) = ol ) * P( )

P(X)
E Ma> Likelihood
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P(Walks|X) v.s. P(Drives|X)
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Naive Bayes — Step-1

#1. P(Walks)
E g v Number of Walk

s ¢ s P(Walks) = i)
s + 2 T 2t . Total Observations

g m =Tt 10
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Naive Bayes — Step-2

#2. P(X)

4 o P(X) Number of Similar Observations
i —
& & .
s * 2 T aF g, Total Observations
¢ = T %o 4
walks ¥ A . ® P(X) = —
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Naive Bayes — Step-3

#3. P(X|Walks)

LS Number of Similar

Observations
Among those who Walk

P(X|Walks) =

Walks ¥ ,f""“:g:»,l Total number of Walkers
\. J" 3
& =, P(X|Walks) = —
& & 10
>
Age
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Combining altogether

Likelihood : -
Posterior Probability m \ @Drobabw

*
P(Walks|X) = 10430 — 0.75

m Marginal Likelihood
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Naive Bayes — Step-4

Likelihood Prior Probabilit
Posterior Probability H 1 E ; robability

P(X|Drives) x P(Drives
P(Drives|X) = L PzX) ( )

m

Marginal Likelihood
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Naive Bayes — Step-5

Likelihood : s
Posterior Probability m \ @ Probability

1 20

%
P(Drives|X) = 204 30 — 0.25

30

m Marginal Likelihood
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Types of model

P(Walks|X) v.s. P(Drives|X)

0.75v.s. 0.25
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Final Classification
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Thank you

This presentation is created using LibreOffice Impress 5.1.6.2, can be used freely as per GNU General Public License
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