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Neural Network

• Humans have an ability to identify patterns within the 
accessible information with an astonishingly high degree 
of accuracy. 

• Whenever you see a car or a bicycle you can immediately 
recognize what they are. This is because we have 
learned over a period of time how a car and bicycle looks 
like and what their distinguishing features are. 

• Artificial neural networks are computation systems that 
intend to imitate human learning capabilities via a 
complex architecture that resembles the human nervous 
system.



Human Nervous System



Human Nervous System

• Human nervous system consists of billions of neurons. These 
neurons collectively process input received from sensory 
organs, process the information, and decides what to do in 
reaction to the input. 

• A typical neuron in the human nervous system has three 
main parts: dendrites, nucleus, and axons. 
– The information passed to a neuron is received by 

dendrites. 
– The nucleus is responsible for processing this information. 
– The output of a neuron is passed to other neurons via the 

axon, which is connected to the dendrites of other 
neurons further down the network.



Perceptron

• A perceptron is a simple binary classification 
algorithm, proposed by Cornell scientist Frank 
Rosenblatt. 

• It helps to divide a set of input signals into two 
parts—“yes” and “no”. 

• But unlike many other classification algorithms, the 
perceptron was modeled after the essential unit of 
the human brain—the neuron and has an uncanny 
ability to learn and solve complex problems. 



Perceptron



Perceptron

• A perceptron is a very simple learning machine. 
It can take in a few inputs, each of which has a 
weight to signify how important it is, and 
generate an output decision of “0” or “1”. 

• However, when combined with many other 
perceptrons, it forms an artificial neural 
network. 

• A neural network can, theoretically, answer any 
question, given enough training data and 
computing power.



Multilayer Perceptron

• A multilayer perceptron (MLP) is a perceptron 
that teams up with additional perceptrons, 
stacked in several layers, to solve complex 
problems. 

• Each perceptron in the first layer on the left 
(the input layer), sends outputs to all the 
perceptrons in the second layer (the hidden 
layer), and all perceptrons in the second layer 
send outputs to the final layer on the right (the 
output layer). 



Multilayer Perceptron



Multilayer Perceptron

• Each layer can have a large number of perceptrons, 
and there can be multiple layers, so the multilayer 
perceptron can quickly become a very complex 
system. 

• The multilayer perceptron has another, more 
common name—a neural network. 

• A three-layer MLP, like the diagram in previous slide, 
is called a Non-Deep or Shallow Neural Network. 

• An MLP with four or more layers is called a Deep 
Neural Network. 



Multilayer Perceptron

• One difference between an MLP and a neural 
network is that in the classic perceptron, the 
decision function is a step function and the 
output is binary. 

• In neural networks that evolved from MLPs, 
other activation functions can be used which 
result in outputs of real values, usually between 
0 and 1 or between -1 and 1. 

• This allows for probability-based predictions or 
classification of items into multiple labels.



Structure of a Perceptron



The Percpetron Learning Process

1 Takes the inputs, multiplies them by their 
weights, and computes their sum 

2 Adds a bias factor, the number 1 multiplied by a 
weight

3 Feeds the sum through the activation function

4 The result is the perceptron output



Step-1 Backpropogation

• Takes the inputs, multiplies them by their 
weights, and computes their sum 

• Why It’s Important ?
– The weights allow the perceptron to evaluate the 

relative importance of each of the outputs. 
– Neural network algorithms learn by discovering 

better and better weights that result in a more 
accurate prediction. 

– There are several algorithms used to fine tune the 
weights, the most common is called backpropagation.



Step-2 Neural Network Bias

• Adds a bias factor, the number 1 multiplied by a 
weight

• This is a technical step that makes it possible to 
move the activation function curve up and 
down, or left and right on the number graph. 

• It makes it possible to fine-tune the numeric 
output of the perceptron. 



Step-3 Activation Function

• Feeds the sum through the activation function 

• The activation function maps the input values to 
the required output values. 

• For example, input values could be between 1 
and 100, and outputs can be 0 or 1. The activation 
function also helps the perceptron to learn, when 
it is part of a multilayer perceptron (MLP). 

• Certain properties of the activation function, 
especially its non-linear nature, make it possible 
to train complex neural networks.



Step-4 Output

• The perceptron output is a classification 
decision. 

• In a multilayer perceptron, the output of one 
layer’s perceptrons is the input of the next 
layer. 

• The output of the final perceptrons, in the 
“output layer”, is the final prediction of the 
perceptron learning model.



Transformation 

• From the Classic Perceptron to a Full-Fledged 
Deep Neural Network

• Although multilayer perceptrons (MLP) and 
neural networks are essentially the same thing, 
you need to add a few ingredients before an 
MLP becomes a full neural network. These are:
– Backpropagation
– Hyperparameters
– Advanced structures 



Backpropogation

• The backpropagation algorithm allows you to 
perform a “backward pass”, which helps tune the 
weights of the inputs. 

• Backpropagation performs iterative backward 
passes which attempt to minimize the “loss”, or the 
difference between the known correct prediction 
and the actual model prediction. 

• With each backward pass, the weights move 
towards an optimum that minimizes the loss 
function and results in the most accurate prediction.



Backpropogation

• Backpropagation is an algorithm commonly used 
to train neural networks. 

• When the neural network is initialized, weights 
are set for its individual elements, called neurons. 

• Inputs are loaded, they are passed through the 
network of neurons, and the network provides an 
output for each one, given the initial weights. 

• Backpropagation helps to adjust the weights of 
the neurons so that the result comes closer and 
closer to the known true result. 



Backpropogation



Hyperparameters 

• In a modern neural network, aspects of the 
multilayer structure such as the number of 
layers, initial weights, the type of activation 
function, and details of the learning process, are 
treated as parameters and tuned to improve 
the performance of the neural network. 

• Tuning hyperparameters is an art, and can have 
a huge impact on the performance of a neural 
network.



Model vs. Hyperparameters 

• Model parameters are internal to the neural network – for 
example, neuron weights. They are estimated or learned 
automatically from training samples. These parameters 
are also used to make predictions in a production model.

• Hyperparameters are external parameters set by the 
operator of the neural network – for example, selecting 
which activation function to use or the batch size used in 
training. 

• Hyperparameters have a huge impact on the accuracy of a 
neural network, there may be different optimal values for 
different values, and it is non-trivial to discover those 
values.



Hyperparameters  of Neural N/W

• Number of hidden layers

• Dropout

• Neural network activation function

• Weights initialization



Hyperparameters  of Neural N/W

• Number of hidden layers – 
– adding more hidden layers of neurons generally improves 

accuracy, to a certain limit which can differ depending on 
the problem.

• Dropout – 
– what percentage of neurons should be randomly “killed” 

during each epoch to prevent overfitting.

• Neural network activation function – 
– which function should be used to process the inputs flowing 

into each neuron. The activation function can impact the 
network’s ability to converge and learn for different ranges 
of input values, and also its training speed.



Hyperparameters  of Neural N/W

• Weights initialization – 
– it is necessary to set initial weights for the first forward 

pass. Two basic options are to set weights to zero or to 
randomize them. 

– However, this can result in a vanishing or exploding 
gradient, which will make it difficult to train the model. 

– To mitigate this problem, you can use a heuristic (a 
formula tied to the number of neuron layers) to 
determine the weights. 

– A common heuristic used for the Tanh activation is 
called Xavier initialization.



Hyperparameters of training algo

• Neural network learning rate

• Deep learning epoch, iterations and batch size

• Optimizer algorithm and neural network 
momentum



Neural Network Learning Rate

• How fast the backpropagation algorithm 
performs gradient descent. 

• A lower learning rate makes the network train 
faster but might result in missing the minimum 
of the loss function.



Epoch, iterations, batch size

• Deep learning epoch, iterations and batch size – these 
parameters determine the rate at which samples are fed to 
the model for training. 

• An epoch is a group of samples which are passed through 
the model together (forward pass) and then run through 
backpropagation (backward pass) to determine their 
optimal weights. 

• If the epoch cannot be run all together due the size of the 
sample or complexity of the network, it is split into 
batches, and the epoch is run in two or more iterations. 

• The number of epochs and batches per epoch can 
significantly affect model fit, as shown (next slide).



Epoch, iterations, batch size



Optimizer Algorithm

• Optimizer algorithm and neural network momentum – 
when a neural network trains, it uses an algorithm to 
determine the optimal weights for the model, called an 
optimizer. 

• The basic option is Stochastic Gradient Descent, but there 
are other options. 

• Another common algorithm is Momentum, which works by 
waiting after a weight is updated, and updating it a second 
time using a delta amount. 

• This speeds up training gradually, with a reduced risk of 
oscillation. Other algorithms are Nesterov Accelerated 
Gradient, AdaDelta and Adam.



Hyperparameter Tuning Methods

• Manual Hyperparameter Tuning

• Grid Search

• Random Search

• Bayesian Optimization



Manual Tuning

• Traditionally, hyperparameters were tuned manually by 
trial and error. 

• This is still commonly done, and experienced operators 
can “guess” parameter values that will achieve very high 
accuracy for deep learning models. 

• However, there is a constant search for better, faster 
and more automatic methods to optimize 
hyperparameters. 

• Pros: Very simple and effective with skilled operators 

• Cons: Not scientific, unknown if you have fully 
optimized hyperparameters



Grid Search

• Grid search is slightly more sophisticated than manual tuning. It 
involves systematically testing multiple values of each 
hyperparameter, by automatically retraining the model for each 
value of the parameter. 

• For example, you can perform a grid search for the optimal 
batch size by automatically training the model for batch sizes 
between 10-100 samples, in steps of 20. 

• The model will run 5 times and the batch size selected will be 
the one which yields highest accuracy. 

• Pros: Maps out the problem space and provides more 
opportunity for optimization 

• Cons: Can be slow to run for large numbers of hyperparameter 
values



Random Search

• According to a 2012 research study by James Bergstra and 
Yoshua Bengio, testing randomized values of 
hyperparameters is actually more effective than manual 
search or grid search. 

• In other words, instead of testing systematically to cover 
“promising areas” of the problem space, it is preferable to 
test random values drawn from the entire problem space. 

• Pros: According to the study, provides higher accuracy with 
less training cycles, for problems with high dimensionality 

• Cons: Results are unintuitive, difficult to understand “why” 
hyperparameter values were chosen



Comparing 



Baysian Optimization 

• Bayesian optimization (described by Shahriari, et al) is 
a technique which tries to approximate the trained 
model with different possible hyperparameter values. 

• To simplify, bayesian optimization trains the model 
with different hyperparameter values, and observes 
the function generated for the model by each set of 
parameter values. 

• It does this over and over again, each time selecting 
hyperparameter values that are slightly different and 
can help plot the next relevant segment of the 
problem space. 



Baysian Optimization 

• Similar to sampling methods in statistics, the 
algorithm ends up with a list of possible 
hyperparameter value sets and model functions, from 
which it predicts the optimal function across the 
entire problem set. 

• Pros: The original study and practical experience 
from the industry shows that bayesian optimization 
results in significantly higher accuracy compared to 
random search. 

• Cons: Like random search, results are not intuitive 
and difficult to improve on, even by trained operators



In real world...

• In a real neural network project, you will have three 
practical options:

– Performing manual optimization

– Leveraging hyperparameter optimization 
techniques in the deep learning framework of 
your choice. The framework will report on 
hyperparameter values discovered, their 
accuracy and validation scores

– Using third party hyperparameter optimization 
tools



Advanced Strutures

• Many neural networks use a complex structure that 
builds on the multilayer perceptron. 

• For example, a Recurrent Neural Network (RNN) uses 
two neural networks in parallel—one runs the training 
data from beginning to end, the other from the end to 
the beginning, which helps with language processing. 

• A Convolutional Neural Network (CNN)  uses a three-
dimensional MLP—essentially, three multilayer 
perceptron structures that learn the same data point. 

• This is useful for color images which have three layers 
of “depth”—red, green and blue.



Neural Network in Real World

• In the real world, perceptrons work under the hood. 
You will run neural networks using deep learning 
frameworks such as TensorFlow, Keras, and PyTorch. 

• These frameworks ask you for hyperparameters 
such as the number of layers, activation function, 
and type of neural network, and construct the 
network of perceptrons automatically. 

• When you work on real, production-scale deep 
learning projects, you will find that the operations 
side of things can become a bit daunting:



Neural Network in Real World

• Running experiments at scale and tracking results, 
source code, metrics, and hyperparameters. 
– To succeed at deep learning you need to run large 

numbers of experiments and manage them 
correctly to see what worked.

• Running experiments across multiple machines—
– in most cases neural networks are computationally 

intensive. To work efficiently, you’ll need to run 
experiments on multiple machines. This requires 
provisioning these machines and distributing the 
work.



Neural Network in Real World

• Manage training data—
– The more training data you provide, the 

better the model will learn and perform. 
– There are files to manage and copy to the 

training machines. 
– If your model’s input is multimedia, those 

files can weigh anywhere from Gigabytes to 
Petabytes.



Activation Function

• Neural network activation functions are a crucial 
component of deep learning. 

• Activation functions determine the output of a deep 
learning model, its accuracy, and also the 
computational efficiency of training a model—which 
can make or break a large scale neural network. 

• Activation functions also have a major effect on the 
neural network’s ability to converge and the 
convergence speed, or in some cases, activation 
functions might prevent neural networks from 
converging in the first place.



Activation Function

• Activation functions are mathematical equations 
that determine the output of a neural network. 

• The function is attached to each neuron in the 
network, and determines whether it should be 
activated (“fired”) or not, based on whether 
each neuron’s input is relevant for the model’s 
prediction. 

• Activation functions also help normalize the 
output of each neuron to a range between 1 and 
0 or between -1 and 1.



Activation Function

• An additional aspect of activation functions is 
that they must be computationally efficient 
because they are calculated across thousands or 
even millions of neurons for each data sample. 

• Modern neural networks use a technique called 
backpropagation to train the model, which 
places an increased computational strain on the 
activation function, and its derivative function.



Common Activation Function



ANN and DNN

• Artificial Neural Networks (ANN) are comprised of a 
large number of simple elements, called neurons, each of 
which makes simple decisions. Together, the neurons can 
provide accurate answers to some complex problems, 
such as natural language processing, computer vision, 
and AI.

• A neural network can be “shallow”, meaning it has an 
input layer of neurons, only one “hidden layer” that 
processes the inputs, and an output layer that provides 
the final output of the model. 

• A Deep Neural Network (DNN) commonly has between 2-
8 additional layers of neurons. 



Non-Deep Feed Forward Neural N/W



Deep Neural Network



Role of Activation Function

• In a neural network, numeric data points, called inputs, are 
fed into the neurons in the input layer. Each neuron has a 
weight, and multiplying the input number with the weight 
gives the output of the neuron, which is transferred to the 
next layer.

• The activation function is a mathematical “gate” in between 
the input feeding the current neuron and its output going to 
the next layer. 

• It can be as simple as a step function that turns the neuron 
output on and off, depending on a rule or threshold. Or it can 
be a transformation that maps the input signals into output 
signals that are needed for the neural network to function.



Role of Activation Function



Process Carried out by Neuron



Types of Activation Function

• Binary Step Function

• Linear Activation Function

• Non Linear Activation Function



Binary Step Function

• A binary step function is a threshold-based activation 
function. If the input value is above or below a certain 
threshold, the neuron is activated and sends exactly the same 
signal to the next layer.

 

• The problem with a step function is that it does not allow 
multi-value outputs—for example, it cannot support 
classifying the inputs into one of several categories.



Linear Activation Function

• It takes the inputs, multiplied by the weights for 
each neuron, and creates an output signal 
proportional to the input. 

• In one sense, a linear function is better than a 
step function because it allows multiple 
outputs, not just yes and no.



Problems: Linear Activation Function

• Not possible to use backpropagation  (gradient descent) to 
train the model—
– The derivative of the function is a constant, and has no 

relation to the input, X. So it’s not possible to go back and 
understand which weights in the input neurons can provide 
a better prediction.

• All layers of the neural network collapse into one—
– With linear activation functions, no matter how many layers 

in the neural network, the last layer will be a linear function 
of the first layer (because a linear combination of linear 
functions is still a linear function). So a linear activation 
function turns the neural network into just one layer.



Non Linear Activation Function

• Modern neural network models use non-linear 
activation functions. They allow the model to 
create complex mappings between the network’s 
inputs and outputs, which are essential for 
learning and modeling complex data, such as 
images, video, audio, and data sets which are non-
linear or have high dimensionality.

• Almost any process imaginable can be represented 
as a functional computation in a neural network, 
provided that the activation function is non-linear.



Problems: Non Linear Activation Function

• Non-linear functions address the problems of a 
linear activation function:

– They allow backpropagation because they have a 
derivative function which is related to the inputs.

– They allow “stacking” of multiple layers of 
neurons to create a deep neural network. 
Multiple hidden layers of neurons are needed to 
learn complex data sets with high levels of 
accuracy.



Common Non-Linear Functions

• Sigmoid / Logistic

• Tanh / Hyperbolic Tangent

• ReLU (Rectified Linear Unit)

• Leaky ReLU

• Parametric ReLU

• Softmax

• Swish



Sigmoid / Logistic



Sigmoid / Logistic

• Advantages

– Smooth gradient, preventing “jumps” in output values.

– Output values bound between 0 and 1, normalizing the output of 
each neuron.

– Clear predictions—For X above 2 or below -2, tends to bring the Y 
value (the prediction) to the edge of the curve, very close to 1 or 0. 
This enables clear predictions.

• Disadvantages
– Vanishing gradient—for very high or very low values of X, there is 

almost no change to the prediction, causing a vanishing gradient 
problem. This can result in the network refusing to learn further, or 
being too slow to reach an accurate prediction.

– Outputs not zero centered.

– Computationally expensive



Tanh

• Advantages

– Zero centered—making it easier to model inputs 
that have strongly negative, neutral, and 
strongly positive values.

– Otherwise like the Sigmoid function.

• Disadvantages

– Like the Sigmoid function



ReLU (Rectified Linear Unit)



ReLU (Rectified Linear Unit)

• Advantages
– Computationally efficient—allows the network to 

converge very quickly
– Non-linear—although it looks like a linear function, 

ReLU has a derivative function and allows for 
backpropagation

• Disadvantages
– The Dying ReLU problem—when inputs approach 

zero, or are negative, the gradient of the function 
becomes zero, the network cannot perform 
backpropagation and cannot learn.



Leaky ReLU

• Advantages
– Prevents dying ReLU problem—this variation of 

ReLU has a small positive slope in the negative 
area, so it does enable backpropagation, even 
for negative input values

– Otherwise like ReLU

• Disadvantages
– Results not consistent—leaky ReLU does not 

provide consistent predictions for negative 
input values.



Leaky ReLU



Parametric ReLU

• Advantages
– Allows the negative slope to be learned—unlike 

leaky ReLU, this function provides the slope of 
the negative part of the function as an argument. 

– It is, therefore, possible to perform 
backpropagation and learn the most appropriate 
value of α.

– Otherwise like ReLU

• Disadvantages
– May perform differently for different problems.



Softmax 



Softmax 

• Advantages

– Able to handle multiple classes only one class in 
other activation functions—normalizes the outputs 
for each class between 0 and 1, and divides by their 
sum, giving the probability of the input value being in 
a specific class.

– Useful for output neurons—typically Softmax is used 
only for the output layer, for neural networks that 
need to classify inputs into multiple categories.



Swish 

• Swish is a new, self-gated activation function discovered 
by researchers at Google. 

• According to their paper, it performs better than ReLU 
with a similar level of computational efficiency. 

• In experiments on ImageNet with identical models 
running ReLU and Swish, the new function achieved top 
-1 classification accuracy 0.6-0.9% higher.



Summary 



Challenges 

• While selecting and switching activation 
functions in deep learning frameworks is easy, 
you will find that managing multiple experiments 
and trying different activation functions on large 
test data sets can be challenging.

• It can be difficult to:
– Track experiment progress
– Run experiments across multiple machines 
– Manage training data 



Let’s Start with an example

Reference: Friendly introduction to RNN by Luis Serrano



Conditional Outputs



Basic NN



Let’s do some maths



Now in NN



Conceptualizing 



Adding to NN



Useful resources

• https://missinglink.ai

• https://machinelearningmastery.com

• https://www.allaboutcircuits.com 

• https://medium.com 

https://missinglink.ai/
https://machinelearningmastery.com/
https://www.allaboutcircuits.com/
https://medium.com/


tushar@tusharkute.com

      Thank you

This presentation is created using LibreOffice Impress 5.1.6.2, can be used freely as per GNU General Public License

Web Resources
http://mitu.co.in 

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies MITUSkillologies
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