
Multi Layer Perceptron

Tushar B. Kute,
http://tusharkute.com

Neural Network

• Humans have an ability to identify patterns within the
accessible information with an astonishingly high degree
of accuracy.

• Whenever you see a car or a bicycle you can immediately
recognize what they are. This is because we have
learned over a period of time how a car and bicycle looks
like and what their distinguishing features are.

• Artificial neural networks are computation systems that
intend to imitate human learning capabilities via a
complex architecture that resembles the human nervous
system.

Human Nervous System

Human Nervous System

• Human nervous system consists of billions of neurons. These
neurons collectively process input received from sensory
organs, process the information, and decides what to do in
reaction to the input.

• A typical neuron in the human nervous system has three
main parts: dendrites, nucleus, and axons.
– The information passed to a neuron is received by

dendrites.
– The nucleus is responsible for processing this information.
– The output of a neuron is passed to other neurons via the

axon, which is connected to the dendrites of other
neurons further down the network.

Perceptron

• A perceptron is a simple binary classification
algorithm, proposed by Cornell scientist Frank
Rosenblatt.

• It helps to divide a set of input signals into two
parts—“yes” and “no”.

• But unlike many other classification algorithms, the
perceptron was modeled after the essential unit of
the human brain—the neuron and has an uncanny
ability to learn and solve complex problems.

Perceptron

Perceptron

• A perceptron is a very simple learning machine.
It can take in a few inputs, each of which has a
weight to signify how important it is, and
generate an output decision of “0” or “1”.

• However, when combined with many other
perceptrons, it forms an artificial neural
network.

• A neural network can, theoretically, answer any
question, given enough training data and
computing power.

Multilayer Perceptron

• A multilayer perceptron (MLP) is a perceptron
that teams up with additional perceptrons,
stacked in several layers, to solve complex
problems.

• Each perceptron in the first layer on the left
(the input layer), sends outputs to all the
perceptrons in the second layer (the hidden
layer), and all perceptrons in the second layer
send outputs to the final layer on the right (the
output layer).

Multilayer Perceptron

Multilayer Perceptron

• Each layer can have a large number of perceptrons,
and there can be multiple layers, so the multilayer
perceptron can quickly become a very complex
system.

• The multilayer perceptron has another, more
common name—a neural network.

• A three-layer MLP, like the diagram in previous slide,
is called a Non-Deep or Shallow Neural Network.

• An MLP with four or more layers is called a Deep
Neural Network.

Multilayer Perceptron

• One difference between an MLP and a neural
network is that in the classic perceptron, the
decision function is a step function and the
output is binary.

• In neural networks that evolved from MLPs,
other activation functions can be used which
result in outputs of real values, usually between
0 and 1 or between -1 and 1.

• This allows for probability-based predictions or
classification of items into multiple labels.

Structure of a Perceptron

The Percpetron Learning Process

1 Takes the inputs, multiplies them by their
weights, and computes their sum

2 Adds a bias factor, the number 1 multiplied by a
weight

3 Feeds the sum through the activation function

4 The result is the perceptron output

Step-1 Backpropogation

• Takes the inputs, multiplies them by their
weights, and computes their sum

• Why It’s Important ?
– The weights allow the perceptron to evaluate the

relative importance of each of the outputs.
– Neural network algorithms learn by discovering

better and better weights that result in a more
accurate prediction.

– There are several algorithms used to fine tune the
weights, the most common is called backpropagation.

Step-2 Neural Network Bias

• Adds a bias factor, the number 1 multiplied by a
weight

• This is a technical step that makes it possible to
move the activation function curve up and
down, or left and right on the number graph.

• It makes it possible to fine-tune the numeric
output of the perceptron.

Step-3 Activation Function

• Feeds the sum through the activation function

• The activation function maps the input values to
the required output values.

• For example, input values could be between 1
and 100, and outputs can be 0 or 1. The activation
function also helps the perceptron to learn, when
it is part of a multilayer perceptron (MLP).

• Certain properties of the activation function,
especially its non-linear nature, make it possible
to train complex neural networks.

Step-4 Output

• The perceptron output is a classification
decision.

• In a multilayer perceptron, the output of one
layer’s perceptrons is the input of the next
layer.

• The output of the final perceptrons, in the
“output layer”, is the final prediction of the
perceptron learning model.

Transformation

• From the Classic Perceptron to a Full-Fledged
Deep Neural Network

• Although multilayer perceptrons (MLP) and
neural networks are essentially the same thing,
you need to add a few ingredients before an
MLP becomes a full neural network. These are:
– Backpropagation
– Hyperparameters
– Advanced structures

Backpropogation

• The backpropagation algorithm allows you to
perform a “backward pass”, which helps tune the
weights of the inputs.

• Backpropagation performs iterative backward
passes which attempt to minimize the “loss”, or the
difference between the known correct prediction
and the actual model prediction.

• With each backward pass, the weights move
towards an optimum that minimizes the loss
function and results in the most accurate prediction.

Backpropogation

• Backpropagation is an algorithm commonly used
to train neural networks.

• When the neural network is initialized, weights
are set for its individual elements, called neurons.

• Inputs are loaded, they are passed through the
network of neurons, and the network provides an
output for each one, given the initial weights.

• Backpropagation helps to adjust the weights of
the neurons so that the result comes closer and
closer to the known true result.

Backpropogation

Hyperparameters

• In a modern neural network, aspects of the
multilayer structure such as the number of
layers, initial weights, the type of activation
function, and details of the learning process, are
treated as parameters and tuned to improve
the performance of the neural network.

• Tuning hyperparameters is an art, and can have
a huge impact on the performance of a neural
network.

Model vs. Hyperparameters

• Model parameters are internal to the neural network – for
example, neuron weights. They are estimated or learned
automatically from training samples. These parameters
are also used to make predictions in a production model.

• Hyperparameters are external parameters set by the
operator of the neural network – for example, selecting
which activation function to use or the batch size used in
training.

• Hyperparameters have a huge impact on the accuracy of a
neural network, there may be different optimal values for
different values, and it is non-trivial to discover those
values.

Hyperparameters of Neural N/W

• Number of hidden layers

• Dropout

• Neural network activation function

• Weights initialization

Hyperparameters of Neural N/W

• Number of hidden layers –
– adding more hidden layers of neurons generally improves

accuracy, to a certain limit which can differ depending on
the problem.

• Dropout –
– what percentage of neurons should be randomly “killed”

during each epoch to prevent overfitting.

• Neural network activation function –
– which function should be used to process the inputs flowing

into each neuron. The activation function can impact the
network’s ability to converge and learn for different ranges
of input values, and also its training speed.

Hyperparameters of Neural N/W

• Weights initialization –
– it is necessary to set initial weights for the first forward

pass. Two basic options are to set weights to zero or to
randomize them.

– However, this can result in a vanishing or exploding
gradient, which will make it difficult to train the model.

– To mitigate this problem, you can use a heuristic (a
formula tied to the number of neuron layers) to
determine the weights.

– A common heuristic used for the Tanh activation is
called Xavier initialization.

Hyperparameters of training algo

• Neural network learning rate

• Deep learning epoch, iterations and batch size

• Optimizer algorithm and neural network
momentum

Neural Network Learning Rate

• How fast the backpropagation algorithm
performs gradient descent.

• A lower learning rate makes the network train
faster but might result in missing the minimum
of the loss function.

Epoch, iterations, batch size

• Deep learning epoch, iterations and batch size – these
parameters determine the rate at which samples are fed to
the model for training.

• An epoch is a group of samples which are passed through
the model together (forward pass) and then run through
backpropagation (backward pass) to determine their
optimal weights.

• If the epoch cannot be run all together due the size of the
sample or complexity of the network, it is split into
batches, and the epoch is run in two or more iterations.

• The number of epochs and batches per epoch can
significantly affect model fit, as shown (next slide).

Epoch, iterations, batch size

Optimizer Algorithm

• Optimizer algorithm and neural network momentum –
when a neural network trains, it uses an algorithm to
determine the optimal weights for the model, called an
optimizer.

• The basic option is Stochastic Gradient Descent, but there
are other options.

• Another common algorithm is Momentum, which works by
waiting after a weight is updated, and updating it a second
time using a delta amount.

• This speeds up training gradually, with a reduced risk of
oscillation. Other algorithms are Nesterov Accelerated
Gradient, AdaDelta and Adam.

Hyperparameter Tuning Methods

• Manual Hyperparameter Tuning

• Grid Search

• Random Search

• Bayesian Optimization

Manual Tuning

• Traditionally, hyperparameters were tuned manually by
trial and error.

• This is still commonly done, and experienced operators
can “guess” parameter values that will achieve very high
accuracy for deep learning models.

• However, there is a constant search for better, faster
and more automatic methods to optimize
hyperparameters.

• Pros: Very simple and effective with skilled operators

• Cons: Not scientific, unknown if you have fully
optimized hyperparameters

Grid Search

• Grid search is slightly more sophisticated than manual tuning. It
involves systematically testing multiple values of each
hyperparameter, by automatically retraining the model for each
value of the parameter.

• For example, you can perform a grid search for the optimal
batch size by automatically training the model for batch sizes
between 10-100 samples, in steps of 20.

• The model will run 5 times and the batch size selected will be
the one which yields highest accuracy.

• Pros: Maps out the problem space and provides more
opportunity for optimization

• Cons: Can be slow to run for large numbers of hyperparameter
values

Random Search

• According to a 2012 research study by James Bergstra and
Yoshua Bengio, testing randomized values of
hyperparameters is actually more effective than manual
search or grid search.

• In other words, instead of testing systematically to cover
“promising areas” of the problem space, it is preferable to
test random values drawn from the entire problem space.

• Pros: According to the study, provides higher accuracy with
less training cycles, for problems with high dimensionality

• Cons: Results are unintuitive, difficult to understand “why”
hyperparameter values were chosen

Comparing

Baysian Optimization

• Bayesian optimization (described by Shahriari, et al) is
a technique which tries to approximate the trained
model with different possible hyperparameter values.

• To simplify, bayesian optimization trains the model
with different hyperparameter values, and observes
the function generated for the model by each set of
parameter values.

• It does this over and over again, each time selecting
hyperparameter values that are slightly different and
can help plot the next relevant segment of the
problem space.

Baysian Optimization

• Similar to sampling methods in statistics, the
algorithm ends up with a list of possible
hyperparameter value sets and model functions, from
which it predicts the optimal function across the
entire problem set.

• Pros: The original study and practical experience
from the industry shows that bayesian optimization
results in significantly higher accuracy compared to
random search.

• Cons: Like random search, results are not intuitive
and difficult to improve on, even by trained operators

In real world...

• In a real neural network project, you will have three
practical options:

– Performing manual optimization

– Leveraging hyperparameter optimization
techniques in the deep learning framework of
your choice. The framework will report on
hyperparameter values discovered, their
accuracy and validation scores

– Using third party hyperparameter optimization
tools

Advanced Strutures

• Many neural networks use a complex structure that
builds on the multilayer perceptron.

• For example, a Recurrent Neural Network (RNN) uses
two neural networks in parallel—one runs the training
data from beginning to end, the other from the end to
the beginning, which helps with language processing.

• A Convolutional Neural Network (CNN) uses a three-
dimensional MLP—essentially, three multilayer
perceptron structures that learn the same data point.

• This is useful for color images which have three layers
of “depth”—red, green and blue.

Neural Network in Real World

• In the real world, perceptrons work under the hood.
You will run neural networks using deep learning
frameworks such as TensorFlow, Keras, and PyTorch.

• These frameworks ask you for hyperparameters
such as the number of layers, activation function,
and type of neural network, and construct the
network of perceptrons automatically.

• When you work on real, production-scale deep
learning projects, you will find that the operations
side of things can become a bit daunting:

Neural Network in Real World

• Running experiments at scale and tracking results,
source code, metrics, and hyperparameters.
– To succeed at deep learning you need to run large

numbers of experiments and manage them
correctly to see what worked.

• Running experiments across multiple machines—
– in most cases neural networks are computationally

intensive. To work efficiently, you’ll need to run
experiments on multiple machines. This requires
provisioning these machines and distributing the
work.

Neural Network in Real World

• Manage training data—
– The more training data you provide, the

better the model will learn and perform.
– There are files to manage and copy to the

training machines.
– If your model’s input is multimedia, those

files can weigh anywhere from Gigabytes to
Petabytes.

Activation Function

• Neural network activation functions are a crucial
component of deep learning.

• Activation functions determine the output of a deep
learning model, its accuracy, and also the
computational efficiency of training a model—which
can make or break a large scale neural network.

• Activation functions also have a major effect on the
neural network’s ability to converge and the
convergence speed, or in some cases, activation
functions might prevent neural networks from
converging in the first place.

Activation Function

• Activation functions are mathematical equations
that determine the output of a neural network.

• The function is attached to each neuron in the
network, and determines whether it should be
activated (“fired”) or not, based on whether
each neuron’s input is relevant for the model’s
prediction.

• Activation functions also help normalize the
output of each neuron to a range between 1 and
0 or between -1 and 1.

Activation Function

• An additional aspect of activation functions is
that they must be computationally efficient
because they are calculated across thousands or
even millions of neurons for each data sample.

• Modern neural networks use a technique called
backpropagation to train the model, which
places an increased computational strain on the
activation function, and its derivative function.

Common Activation Function

ANN and DNN

• Artificial Neural Networks (ANN) are comprised of a
large number of simple elements, called neurons, each of
which makes simple decisions. Together, the neurons can
provide accurate answers to some complex problems,
such as natural language processing, computer vision,
and AI.

• A neural network can be “shallow”, meaning it has an
input layer of neurons, only one “hidden layer” that
processes the inputs, and an output layer that provides
the final output of the model.

• A Deep Neural Network (DNN) commonly has between 2-
8 additional layers of neurons.

Non-Deep Feed Forward Neural N/W

Deep Neural Network

Role of Activation Function

• In a neural network, numeric data points, called inputs, are
fed into the neurons in the input layer. Each neuron has a
weight, and multiplying the input number with the weight
gives the output of the neuron, which is transferred to the
next layer.

• The activation function is a mathematical “gate” in between
the input feeding the current neuron and its output going to
the next layer.

• It can be as simple as a step function that turns the neuron
output on and off, depending on a rule or threshold. Or it can
be a transformation that maps the input signals into output
signals that are needed for the neural network to function.

Role of Activation Function

Process Carried out by Neuron

Types of Activation Function

• Binary Step Function

• Linear Activation Function

• Non Linear Activation Function

Binary Step Function

• A binary step function is a threshold-based activation
function. If the input value is above or below a certain
threshold, the neuron is activated and sends exactly the same
signal to the next layer.

• The problem with a step function is that it does not allow
multi-value outputs—for example, it cannot support
classifying the inputs into one of several categories.

Linear Activation Function

• It takes the inputs, multiplied by the weights for
each neuron, and creates an output signal
proportional to the input.

• In one sense, a linear function is better than a
step function because it allows multiple
outputs, not just yes and no.

Problems: Linear Activation Function

• Not possible to use backpropagation (gradient descent) to
train the model—
– The derivative of the function is a constant, and has no

relation to the input, X. So it’s not possible to go back and
understand which weights in the input neurons can provide
a better prediction.

• All layers of the neural network collapse into one—
– With linear activation functions, no matter how many layers

in the neural network, the last layer will be a linear function
of the first layer (because a linear combination of linear
functions is still a linear function). So a linear activation
function turns the neural network into just one layer.

Non Linear Activation Function

• Modern neural network models use non-linear
activation functions. They allow the model to
create complex mappings between the network’s
inputs and outputs, which are essential for
learning and modeling complex data, such as
images, video, audio, and data sets which are non-
linear or have high dimensionality.

• Almost any process imaginable can be represented
as a functional computation in a neural network,
provided that the activation function is non-linear.

Problems: Non Linear Activation Function

• Non-linear functions address the problems of a
linear activation function:

– They allow backpropagation because they have a
derivative function which is related to the inputs.

– They allow “stacking” of multiple layers of
neurons to create a deep neural network.
Multiple hidden layers of neurons are needed to
learn complex data sets with high levels of
accuracy.

Common Non-Linear Functions

• Sigmoid / Logistic

• Tanh / Hyperbolic Tangent

• ReLU (Rectified Linear Unit)

• Leaky ReLU

• Parametric ReLU

• Softmax

• Swish

Sigmoid / Logistic

Sigmoid / Logistic

• Advantages

– Smooth gradient, preventing “jumps” in output values.

– Output values bound between 0 and 1, normalizing the output of
each neuron.

– Clear predictions—For X above 2 or below -2, tends to bring the Y
value (the prediction) to the edge of the curve, very close to 1 or 0.
This enables clear predictions.

• Disadvantages
– Vanishing gradient—for very high or very low values of X, there is

almost no change to the prediction, causing a vanishing gradient
problem. This can result in the network refusing to learn further, or
being too slow to reach an accurate prediction.

– Outputs not zero centered.

– Computationally expensive

Tanh

• Advantages

– Zero centered—making it easier to model inputs
that have strongly negative, neutral, and
strongly positive values.

– Otherwise like the Sigmoid function.

• Disadvantages

– Like the Sigmoid function

ReLU (Rectified Linear Unit)

ReLU (Rectified Linear Unit)

• Advantages
– Computationally efficient—allows the network to

converge very quickly
– Non-linear—although it looks like a linear function,

ReLU has a derivative function and allows for
backpropagation

• Disadvantages
– The Dying ReLU problem—when inputs approach

zero, or are negative, the gradient of the function
becomes zero, the network cannot perform
backpropagation and cannot learn.

Leaky ReLU

• Advantages
– Prevents dying ReLU problem—this variation of

ReLU has a small positive slope in the negative
area, so it does enable backpropagation, even
for negative input values

– Otherwise like ReLU

• Disadvantages
– Results not consistent—leaky ReLU does not

provide consistent predictions for negative
input values.

Leaky ReLU

Parametric ReLU

• Advantages
– Allows the negative slope to be learned—unlike

leaky ReLU, this function provides the slope of
the negative part of the function as an argument.

– It is, therefore, possible to perform
backpropagation and learn the most appropriate
value of α.

– Otherwise like ReLU

• Disadvantages
– May perform differently for different problems.

Softmax

Softmax

• Advantages

– Able to handle multiple classes only one class in
other activation functions—normalizes the outputs
for each class between 0 and 1, and divides by their
sum, giving the probability of the input value being in
a specific class.

– Useful for output neurons—typically Softmax is used
only for the output layer, for neural networks that
need to classify inputs into multiple categories.

Swish

• Swish is a new, self-gated activation function discovered
by researchers at Google.

• According to their paper, it performs better than ReLU
with a similar level of computational efficiency.

• In experiments on ImageNet with identical models
running ReLU and Swish, the new function achieved top
-1 classification accuracy 0.6-0.9% higher.

Summary

Challenges

• While selecting and switching activation
functions in deep learning frameworks is easy,
you will find that managing multiple experiments
and trying different activation functions on large
test data sets can be challenging.

• It can be difficult to:
– Track experiment progress
– Run experiments across multiple machines
– Manage training data

Let’s Start with an example

Reference: Friendly introduction to RNN by Luis Serrano

Conditional Outputs

Basic NN

Let’s do some maths

Now in NN

Conceptualizing

Adding to NN

Useful resources

• https://missinglink.ai

• https://machinelearningmastery.com

• https://www.allaboutcircuits.com

• https://medium.com

https://missinglink.ai/
https://machinelearningmastery.com/
https://www.allaboutcircuits.com/
https://medium.com/

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 5.1.6.2, can be used freely as per GNU General Public License

Web Resources
http://mitu.co.in

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies MITUSkillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

