
Building first neural network

Tushar B. Kute,
http://tusharkute.com

Basic Steps

• 1. Load Data.

• 2. Define Model.

• 3. Compile Model.

• 4. Fit Model.

• 5. Evaluate Model.

• 6. Tie It All Together.

Load dataset: Pima Indian Diabetes

• We are going to use the Pima Indians onset of
diabetes dataset.

• This is a standard machine learning dataset available
for free download from the UCI Machine Learning
repository.

• It describes patient medical record data for Pima
Indians and whether they had an onset of diabetes
within five years.

• It is a binary classification problem (onset of diabetes
as 1 or not as 0). The input variables that describe
each patient are numerical and have varying scales.

Load dataset: Pima Indian Diabetes

• Below lists the eight attributes for the dataset:

1. Number of times pregnant.

2. Plasma glucose concentration a 2 hours in an oral glucose
tolerance test.

3. Diastolic blood pressure (mm Hg).

4. Triceps skin fold thickness (mm).

5. 2-Hour serum insulin (mu U/ml).

6. Body mass index.

7. Diabetes pedigree function.

8. Age (years).

9. Class, onset of diabetes within five years.

Load the data

• Whenever we work with machine learning
algorithms that use a stochastic process (e.g.
random numbers), it is a good idea to initialize the
random number generator with a fixed seed value.

• This is so that you can run the same code again
and again and get the same result.

• This is useful if you need to demonstrate a result,
compare algorithms using the same source of
randomness or to debug a part of your code.

Load the data

• Now we can load our Pima Indians dataset. You
can now load the file directly using the NumPy
function loadtxt().

• There are eight input variables and one output
variable (the last column).

• Once loaded we can split the dataset into
input variables (X) and the output class
variable (Y).

Define Model

• Models in Keras are defined as a sequence of layers.

• We create a Sequential model and add layers one at
a time until we are happy with our network
topology.

• The first thing to get right is to ensure the input
layer has the right number of inputs.

• This can be specified when creating the first layer
with the input dim argument and setting it to 8 for
the 8 input variables.

Define Model

• How do we know the number of layers to use and
their types? This is a very hard question.

• There are heuristics that we can use and often the
best network structure is found through a process
of trial and error experimentation.

• Generally, you need a network large enough to
capture the structure of the problem if that helps
at all.

• Here, we will use a fully-connected network
structure with three layers.

Define Model

• Fully connected layers are defined using the Dense class.
We can specify the number of neurons in the layer as the
first argument, the initialization method as the second
argument as init and specify the activation function
using the activation argument.

• In this case we initialize the network weights to a small
random number generated from a uniform distribution
(uniform), in this case between 0 and 0.05 because that is
the default uniform weight initialization in Keras.

• Another traditional alternative would be normal for
small random numbers generated from a Gaussian
distribution.

Define Model

• We will use the rectifier (relu) activation function on the first two
layers and the sigmoid activation function in the output layer. It
used to be the case that sigmoid and tanh activation functions were
preferred for all layers.

• These days, better performance is seen using the rectifier activation
function.

• We use a sigmoid activation function on the output layer to ensure
our network output is between 0 and 1 and easy to map to either a
probability of class 1 or snap to a hard classification of either class
with a default threshold of 0.5. We can piece it all together by
adding each layer.

• The first hidden layer has 12 neurons and expects 8 input variables.
The second hidden layer has 8 neurons and finally the output layer
has 1 neuron to predict the class (onset of diabetes or not).

Define Model

Compile the model

• Compiling the model uses the efficient numerical
libraries under the covers (the so-called backend)
such as Theano or TensorFlow.

• The backend automatically chooses the best way to
represent the network for training and making
predictions to run on your hardware.

• When compiling, we must specify some additional
properties required when training the network.

• Remember training a network means finding the best
set of weights to make predictions for this problem.

Compile the model

• We must specify the loss function to use to evaluate
a set of weights, the optimizer used to search
through different weights for the network and any
optional metrics we would like to collect and report
during training.

• In this case we will use logarithmic loss, which for a
binary classification problem is defined in Keras as
binary crossentropy.

• We will also use the efficient gradient descent
algorithm adam for no other reason that it is an
efficient default.

Fit the model

• We have defined our model and compiled it ready for efficient
computation. Now it is time to execute the model on some
data. We can train or fit our model on our loaded data by
calling the fit() function on the model.

• The training process will run for a fixed number of iterations
through the dataset called epochs, that we must specify using
the nb epoch argument.

• We can also set the number of instances that are evaluated
before a weight update in the network is performed called the
batch size and set using the batch size argument.

• For this problem we will run for a small number of epochs (150)
and use a relatively small batch size of 10. Again, these can be
chosen experimentally by trial and error.

Evaluate the model

• We have trained our neural network on the entire dataset and we
can evaluate the performance of the network on the same dataset.
This will only give us an idea of how well we have modeled the
dataset (e.g. train accuracy), but no idea of how well the algorithm
might perform on new data.

• We have done this for simplicity, but ideally, you could separate
your data into train and test datasets for the training and evaluation
of your model.

• You can evaluate your model on your training dataset using the
evaluate() function on your model and pass it the same input and
output used to train the model.

• This will generate a prediction for each input and output pair and
collect scores, including the average loss and any metrics you have
configured, such as accuracy.

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 5.1.6.2, can be used freely as per GNU General Public License

Web Resources
http://mitu.co.in

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies MITUSkillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

