First Order Logic

Tushar B. Kute, http://tusharkute.com

Introduction

- In the topic of Propositional logic, we have seen that how to represent statements using propositional logic.
- But unfortunately, in propositional logic, we can only represent the facts, which are either true or false.
- PL is not sufficient to represent the complex sentences or natural language statements.
- The propositional logic has very limited expressive power.

First Order Logic

- Consider the following sentence, which we cannot represent using PL logic.
- "Some humans are intelligent", or
- "Sachin likes cricket."
- To represent the above statements, PL logic is not sufficient, so we required some more powerful logic, such as first-order logic.

First Order Logic

- First-order logic is another way of knowledge representation in artificial intelligence. It is an extension to propositional logic.
- FOL is sufficiently expressive to represent the natural language statements in a concise way.
- First-order logic is also known as Predicate logic or First-order predicate logic.
- First-order logic is a powerful language that develops information about the objects in a more easy way and can also express the relationship between those objects.

First Order Logic

- First-order logic (like natural language) does not only assume that the world contains facts like propositional logic but also assumes the following things in the world:
- Objects: A, B, people, numbers, colors, wars, theories, squares, pits, wumpus,
- Relations: It can be unary relation such as: red, round, is adjacent, or n-any relation such as: the sister of, brother of, has color, comes between
- Function: Father of, best friend, third inning of, end of,
- As a natural language, first-order logic also has two main parts:
- Syntax
- Semantics

First Order Logic

- Following are the basic elements of FOL syntax:
- Constant 1, 2, A, John, Mumbai, cat,....
- Variables $\quad x, y, z, a, b, \ldots$.
- Predicates Brother, Father, $>$,....
- Function sqrt, LeftLegOf,
- Connectives $\quad \wedge, v, \neg, \Rightarrow, \Leftrightarrow$
- Equality ==
- Quantifier \forall, \exists

First Order Logic

- Atomic sentences:
- Atomic sentences are the most basic sentences of first-order logic. These sentences are formed from a predicate symbol followed by a parenthesis with a sequence of terms.
- We can represent atomic sentences as Predicate (term1, term2,, term n).
- Example: Ravi and Ajay are brothers: => Brothers(Ravi, Ajay).

Chinky is a cat: => cat (Chinky).

First Order Logic

- Complex Sentences:
- Complex sentences are made by combining atomic sentences using connectives.
- First-order logic statements can be divided into two parts:
- Subject: Subject is the main part of the statement.
- Predicate: A predicate can be defined as a relation, which binds two atoms together in a statement.

First Order Logic

Consider the statement: "x is an integer.", it consists of two parts, the first part x is the subject of the statement and second part "is an integer," is known as a predicate.

Quantifiers in First Order Logic

- A quantifier is a language element which generates quantification, and quantification specifies the quantity of specimen in the universe of discourse.
- These are the symbols that permit to determine or identify the range and scope of the variable in the logical expression. There are two types of quantifier:
- Universal Quantifier, (for all, everyone, everything)
- Existential quantifier, (for some, at least one).

Universal Quantifier

- Universal quantifier is a symbol of logical representation, which specifies that the statement within its range is true for everything or every instance of a particular thing.
- The Universal quantifier is represented by a symbol \forall, which resembles an inverted A.
- Note: In universal quantifier we use implication " \rightarrow ".
- If x is a variable, then $\forall x$ is read as:

For all x
For each x
For every x.

Universal Quantifier

- Example: All man drink coffee.
- Let a variable x which refers to a cat so all x can be гергеsented in UOD as below:

$\forall x$ man $(x) \rightarrow$ drink (x, coffee).

Existential Quantifier

- Existential quantifiers are the type of quantifiers, which express that the statement within its scope is true for at least one instance of something.
- It is denoted by the logical operator \exists, which resembles as inverted E. When it is used with a predicate variable then it is called as an existential quantifier.
- Note: In Existential quantifier we always use AND or Conjunction symbol (\wedge).
- If x is a variable, then existential quantifier will be $\exists x$ or $\exists(x)$. And it will be read as:

There exists a 'x.'
For some 'x.'
For at least one 'x.'

Existential Quantifier

- Example:

Some boys are intelligent.

$\exists \mathrm{x}$: boys(x) \wedge intelligent(x$)$

- It will be read as: There are some x where x is a boy who is intelligent.
- Points to remember:
- The main connective for universal quantifier \forall is implication \rightarrow.
- The main connective for existential quantifier \exists is and \wedge.
- Properties of Quantifiers:
- In universal quantifier, $\forall x \forall y$ is similar to $\forall y \forall x$.
- In Existential quantifier, $\exists x \exists y$ is similar to $\exists y \exists x$.
$-\exists x \forall y$ is not similar to $\forall y \exists x$.

Examples

- 1. All birds fly.

In this question the predicate is "fly(bird)."
And since there are all birds who fly so it will be represented as follows.

$$
\forall x \operatorname{bird}(x) \rightarrow f l y(x) .
$$

- 2. Every man respects his parent.

In this question, the predicate is "respect(x, y)," where $x=m a n$, and $\mathrm{y}=$ parent.
Since there is every man so will use \forall, and it will be represented as follows:

$$
\forall x \text { man }(x) \rightarrow \text { respects (x, parent). }
$$

Examples

- 3. Some boys play cricket.

In this question, the predicate is "play (x, y)," where $x=$ boys, and $y=$ game. Since there are some boys so we will use \exists, and it will be represented as: $\exists x$ boys $(x) \rightarrow$ play $(x$, cricket $)$.

- 4. Not all students like both Mathematics and Science.

In this question, the predicate is "like(x, y)," where $x=$ student, and $\mathrm{y}=$ subject.
Since there are not all students, so we will use \forall with negation, so following representation for this:
$\neg \forall(x)[$ student $(x) \rightarrow$ like $(x$, Mathematics) \wedge like $(x$, Science $)]$.

Examples

- 5. Only one student failed in Mathematics.

In this question, the predicate is "failed (x, y)," where $x=$ student, and $\mathrm{y}=$ subject.
Since there is only one student who failed in Mathematics, so we will use following representation for this:
$\exists(x)[$ student $(x) \rightarrow$ failed (x, Mathematics) $\wedge \forall(y)$ $[\neg(x==y) \wedge$ student $(y) \rightarrow$ failed (x, Mathematics)].

Free and Bound Variables

- The quantifiers interact with variables which appear in a suitable way. There are two types of variables in Firstorder logic which are given below:
- Free Variable: A variable is said to be a free variable in a formula if it occurs outside the scope of the quantifier.

Example: $\forall x \exists(y)[P(x, y, z)]$, where z is a free variable.

- Bound Variable: A variable is said to be a bound variable in a formula if it occurs within the scope of the quantifier.

Example: $\forall x[A(x) B(y)]$, here x and y are the bound variables.

Thank you

This presentation is created using LibreOffice Impress 7.0.1.2, can be used freely as per GNU General Public License
@mitu_skillologies

/mITuSkillologies

@mitu_group

/company/mitu- MITUSkillologies skillologies

Web Resources
https://mitu.co.in
http://tusharkute.com
contact@mitu.co.in tushar@tusharkute.com

