
Flutter Widgets

Tushar B. Kute,
http://tusharkute.com

Widget

• Whenever you are going to code for building
anything in Flutter, it will be inside a widget.

• The central purpose is to build the app out of
widgets. It describes how your app view should
look like with their current configuration and state.

• When you made any alteration in the code, the
widget rebuilds its description by calculating the
difference of previous and current widget to
determine the minimal changes for rendering in UI
of the app.

Widget

• Widgets are nested with each other to build the
app. It means the root of your app is itself a
widget, and all the way down is a widget also.

• For example, a widget can display something,
can define design, can handle interaction, etc.

Widget Tree

Widget Creation

• We can create the Flutter widget like this:

Class ImageWidget extends StatelessWidget {

 // Class Stuff

}

Stateful and Stateless

• A widget is either stateful or stateless. If a widget can
change—when a user interacts with it, for example—it’s
stateful.

• A stateless widget never changes. Icon, IconButton, and
Text are examples of stateless widgets. Stateless widgets
subclass StatelessWidget.

• A stateful widget is dynamic: for example, it can change its
appearance in response to events triggered by user
interactions or when it receives data.

• Checkbox, Radio, Slider, InkWell, Form, and TextField are
examples of stateful widgets. Stateful widgets subclass
StatefulWidget.

Widget - Types

• We can split the Flutter widget into two categories:

– Visible (Output and Input)

– Invisible (Layout and Control)

Visible Widget

• The visible widgets are related to the user input and
output data. Some of the important types of this
widget are:

• Text

– A Text widget holds some text to display on the
screen.

– We can align the text widget by using textAlign
property, and style property allow the
customization of Text that includes font, font
weight, font style, letter spacing, color, and many
more. We can use it as like below code snippets.

Visible Widget

new Text(

 'Hello, Skillologies!',

 textAlign: TextAlign.center,

 style: new TextStyle(fontWeight: FontWeight.bold),

)

Visible Widget

//FlatButton Example

new FlatButton(

 child: Text("Click here"),

 onPressed: () {

 // Do something here

 },

),

Visible Widget

//RaisedButton Example

new RaisedButton(

 child: Text("Click here"),

 elevation: 5.0,

 onPressed: () {

 // Do something here

 },

),

Image

This widget holds the image which can fetch it from
multiple sources like from the asset folder or directly
from the URL. It provides many constructors for loading
image, which are given below:

– Image: It is a generic image loader, which is used by
ImageProvider.

– asset: It load image from your project asset folder.

– file: It loads images from the system folder.

– memory: It load image from memory.

– network: It loads images from the network.

Visible Widget

• The visible widgets are related to the user input and
output data. Some of the important types of this
widget are:

• Text

– A Text widget holds some text to display on the
screen.

– We can align the text widget by using textAlign
property, and style property allow the
customization of Text that includes font, font
weight, font style, letter spacing, color, and many
more. We can use it as like below code snippets.

Icon

• This widget acts as a container for storing the
Icon in the Flutter. The following code explains
it more clearly.

new Icon(

 Icons.add,

 size: 34.0,

)

Invisible Widget

• The invisible widgets are related to the layout and control
of widgets. It provides controlling how the widgets actually
behave and how they will look onto the screen. Some of the
important types of these widgets are:

• Column
– A column widget is a type of widget that arranges all its

children's widgets in a vertical alignment.
– It provides spacing between the widgets by using the

mainAxisAlignment and crossAxisAlignment properties.
– In these properties, the main axis is the vertical axis, and

the cross axis is the horizontal axis.

Invisible Widget

• The below code snippets construct two widget elements vertically.

new Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 new Text(

 "VegElement",

),

 new Text(

 "Non-vegElement"

),

],

),

Invisible Widget

• The row widget is similar to the column widget,
but it constructs a widget horizontally rather
than vertically.

• Here, the main axis is the horizontal axis, and
the cross axis is the vertical axis.

• Example
– The below code snippets construct two

widget elements horizontally.

Invisible Widget

new Row(

 mainAxisAlignment: MainAxisAlignment.spaceEvenly,

 children: <Widget>[

 new Text(

 "VegElement",

),

 new Text(

 "Non-vegElement"

),

],

),

Invisible Widget

• Center: This widget is used to center the child widget, which comes inside it. All the
previous examples contain inside the center widget.

Center(

 child: new clumn(

 mainAxisAlignment: MainAxisAlignment.spaceEvenly,

 children: <Widget>[

 new Text(

 "VegElement",

),

 new Text(

 "Non-vegElement"

),

],

),

),

Invisible Widget

• This widget wraps other widgets to give them padding in
specified directions. You can also provide padding in all
directions. We can understand it from the below example
that gives the text widget padding of 6.0 in all directions.

Example

Padding(

 padding: const EdgeInsets.all(6.0),

 child: new Text(

 "Element 1",

),

),

Invisible Widget

• Scaffold
– This widget provides a framework that allows

you to add common material design elements
like AppBar, Floating Action Buttons,
Drawers, etc.

• Stack
– It is an essential widget, which is mainly used

for overlapping a widget, such as a button on
a background gradient.

StatefulWidget

• A StatefulWidget has state information. It
contains mainly two classes: the state object
and the widget. It is dynamic because it can
change the inner data during the widget
lifetime. This widget does not have a build()
method. It has createState() method, which
returns a class that extends the Flutters State
Class. The examples of the StatefulWidget are
Checkbox, Radio, Slider, InkWell, Form, and
TextField.

Flutter Engine

• It is a portable runtime for high-quality mobile
apps and primarily based on the C++ language.

• It implements Flutter core libraries that include
animation and graphics, file and network I/O,
plugin architecture, accessibility support, and a
dart runtime for developing, compiling, and
running Flutter applications.

• It takes Google's open-source graphics library,
Skia, to render low-level graphics.

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 5.1.6.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies MITUSkillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

