
Constraint Satisfaction Problems

Tushar B. Kute,
http://tusharkute.com

Search Algorithm

• The objective of every problem-solving
technique is one, i.e., to find a solution to reach
the goal.

• Although, in adversarial search and local search,
there were no constraints on the agents while
solving the problems and reaching to its
solutions.

Constraint satisfaction

• Constraint satisfaction is a technique where a problem is
solved when its values satisfy certain constraints or rules of
the problem. Such type of technique leads to a deeper
understanding of the problem structure as well as its
complexity.

• Constraint satisfaction depends on three components,
namely:
– X: It is a set of variables.
– D: It is a set of domains where the variables reside. There

is a specific domain for each variable.
– C: It is a set of constraints which are followed by the set

of variables.

Constraint satisfaction

• In constraint satisfaction, domains are the spaces
where the variables reside, following the problem
specific constraints.

• These are the three main elements of a constraint
satisfaction technique. The constraint value
consists of a pair of {scope, rel}.

• The scope is a tuple of variables which participate
in the constraint and rel is a relation which
includes a list of values which the variables can
take to satisfy the constraints of the problem.

Constraint satisfaction

• Solving Constraint Satisfaction Problems

• The requirements to solve a constraint
satisfaction problem (CSP) is:
– A state-space
– The notion of the solution.

• A state in state-space is defined by assigning
values to some or all variables such as

{X1=v1, X2=v2, and so on…}.

Constraint satisfaction

• An assignment of values to a variable can be done in three
ways:
– Consistent or Legal Assignment: An assignment which

does not violate any constraint or rule is called
Consistent or legal assignment.

– Complete Assignment: An assignment where every
variable is assigned with a value, and the solution to the
CSP remains consistent. Such assignment is known as
Complete assignment.

– Partial Assignment: An assignment which assigns values
to some of the variables only. Such type of assignments
are called Partial assignments.

Types of Domains in CSP

• There are following two types of domains which
are used by the variables :
– Discrete Domain: It is an infinite domain

which can have one state for multiple
variables. For example, a start state can be
allocated infinite times for each variable.

– Finite Domain: It is a finite domain which can
have continuous states describing one
domain for one specific variable. It is also
called a continuous domain.

Constraint Types in CSP

• With respect to the variables, basically there are
following types of constraints:
– Unary Constraints: It is the simplest type of

constraints that restricts the value of a single
variable.

– Binary Constraints: It is the constraint type
which relates two variables. A value x2 will
contain a value which lies between x1 and x3.

– Global Constraints: It is the constraint type
which involves an arbitrary number of variables.

Constraint Types in CSP

• Some special types of solution algorithms are
used to solve the following types of constraints:
– Linear Constraints: These type of constraints

are commonly used in linear programming
where each variable containing an integer
value exists in linear form only.

– Non-linear Constraints: These type of
constraints are used in non-linear
programming where each variable (an integer
value) exists in a non-linear form.

Constraint Propagation

• In local state-spaces, the choice is only one, i.e., to
search for a solution. But in CSP, we have two choices
either:
– We can search for a solution or
– We can perform a special type of inference called

constraint propagation.

• Constraint propagation is a special type of inference
which helps in reducing the legal number of values for
the variables.

• The idea behind constraint propagation is local
consistency.

Local consistency

• In local consistency, variables are treated as nodes,
and each binary constraint is treated as an arc in the
given problem. There are following local
consistencies which are discussed below:
– Node Consistency: A single variable is said to be

node consistent if all the values in the variable’s
domain satisfy the unary constraints on the
variables.

– Arc Consistency: A variable is arc consistent if
every value in its domain satisfies the binary
constraints of the variables.

Local consistency

• Path Consistency: When the evaluation of a set
of two variable with respect to a third variable
can be extended over another variable,
satisfying all the binary constraints. It is similar
to arc consistency.

• k-consistency: This type of consistency is used
to define the notion of stronger forms of
propagation. Here, we examine the k-
consistency of the variables.

CSP Problems

• Constraint satisfaction includes those problems
which contains some constraints while solving the
problem. CSP includes the following problems:

• Graph Coloring: The problem where the constraint
is that no adjacent sides can have the same color.

CSP Problems

• Sudoku Playing: The gameplay where the
constraint is that no number from 0-9 can be
repeated in the same row or column.

Inference in CSPs

• A number of inference techniques use the constraints to
infer which variable/value pairs are consistent and which
are not. These include node, arc, path, and k-consistent.

• constraint propagation: Using the constraints to reduce
the number of legal values for a variable, which in turn
can reduce the legal values for another variable, and so
on.

• local consistency: If we treat each variable as a node in a
graph and each binary constraint as an arc, then the
process of enforcing local consistency in each part of the
graph causes inconsistent values to be eliminated
throughout the graph.

Inference in CSPs

• Node consistency
– A single variable (a node in the CSP network)

is node-consistent if all the values in the
variable’s domain satisfy the variable’s unary
constraint.

– We say that a network is node-consistent if
every variable in the network is node-
consistent.

Inference in CSPs

• Arc consistency
– A variable in a CSP is arc-consistent if every value in

its domain satisfies the variable’s binary constraints.
– Xi is arc-consistent with respect to another variable

Xj if for every value in the current domain Di there is
some value in the domain Dj that satisfies the binary
constraint on the arc (Xi, Xj).

– A network is arc-consistent if every variable is arc-
consistent with every other variable.

– Arc consistency tightens down the domains (unary
constraint) using the arcs (binary constraints).

Inference in CSPs

• Path consistency
– Path consistency: A two-variable set {Xi, Xj} is

path-consistent with respect to a third
variable Xm if, for every assignment {Xi = a, Xj
= b} consistent with the constraint on {Xi, Xj},
there is an assignment to Xm that satisfies
the constraints on {Xi, Xm} and {Xm, Xj}.

– Path consistency tightens the binary
constraints by using implicit constraints that
are inferred by looking at triples of variables.

Inference in CSPs

• K-consistency
– K-consistency: A CSP is k-consistent if, for any set of k-1

variables and for any consistent assignment to those variables,
a consistent value can always be assigned to any kth variable.

– 1-consistency = node consistency; 2-consisency = arc
consistency; 3-consistensy = path consistency.

– A CSP is strongly k-consistent if it is k-consistent and is also (k -
1)-consistent, (k – 2)-consistent, … all the way down to 1-
consistent.

– A CSP with n nodes and make it strongly n-consistent, we are
guaranteed to find a solution in time O(n2d). But algorithm for
establishing n-consitentcy must take time exponential in n in
the worse case, also requires space that is exponential in n.

Inference in CSPs

• Global constraints
– A global constraint is one involving an

arbitrary number of variables (but not
necessarily all variables).

– Global constraints can be handled by special-
purpose algorithms that are more efficient
than general-purpose methods.

Global constraints

• 1) inconsistency detection for Alldiff constraints
– A simple algorithm: First remove any variable in the

constraint that has a singleton domain, and delete
that variable’s value from the domains of the
remaining variables. Repeat as long as there are
singleton variables. If at any point an empty domain is
produced or there are more vairables than domain
values left, then an inconsistency has been detected.

– A simple consistency procedure for a higher-order
constraint is sometimes more effective than applying
arc consistency to an equivalent set of binary
constrains.

Global constraints

• 2) inconsistency detection for resource constraint (the atmost
constraint)

• We can detect an inconsistency simply by checking the sum of the
minimum of the current domains;

• e.g. Atmost(10, P1, P2, P3, P4): no more than 10 personnel are
assigned in total.

• If each variable has the domain {3, 4, 5, 6}, the Atmost constraint
cannot be satisfied.

• We can enforce consistency by deleting the maximum value of
any domain if it is not consistent with the minimum values of the
other domains.

• e.g. If each variable in the example has the domain {2, 3, 4, 5, 6},
the values 5 and 6 can be deleted from each domain.

Global constraints

• 3) inconsistency detection for bounds consistent

• For large resource-limited problems with integer
values, domains are represented by upper and lower
bounds and are managed by bounds propagation.

• e.g. suppose there are two flights F1 and F2 in an
airline-scheduling problem, for which the planes
have capacities 165 and 385, respectively. The initial
domains for the numbers of passengers on each
flight are

• D1 = [0, 165] and D2 = [0, 385].

Global constraints

• Now suppose we have the additional constraint
that the two flight together must carry 420
people: F1 + F2 = 420. Propagating bounds
constraints, we reduce the domains to

D1 = [35, 165] and D2 = [255, 385].

• A CSP is bounds consistent if for every variable
X, and for both the lower-bound and upper-
bound values of X, there exists some value of Y
that satisfies the constraint between X and Y
for every variable Y.

Sudoku

• A Sudoku puzzle can be considered a CSP with
81 variables, one for each square. We use the
variable names A1 through A9 for the top row
(left to right), down to I1 through I9 for the
bottom row.

• The empty squares have the domain {1, 2, 3, 4,
5, 6, 7, 8, 9} and the pre-filled squares have a
domain consisting of a single value.

Sudoku

• There are 27 different Alldiff constraints: one for each row, column, and box of 9 squares:

•

• Alldiff(A1, A2, A3, A4, A5, A6, A7, A8, A9)

•

• Alldiff(B1, B2, B3, B4, B5, B6, B7, B8, B9)

•

• …

•

• Alldiff(A1, B1, C1, D1, E1, F1, G1, H1, I1)

•

• Alldiff(A2, B2, C2, D2, E2, F2, G2, H2, I2)

•

• …

•

• Alldiff(A1, A2, A3, B1, B2, B3, C1, C2, C3)

•

• Alldiff(A4, A5, A6, B4, B5, B6, C4, C5, C6)

•

• …

Backtracking search for CSPs

• Backtracking search, a form of depth-first search, is
commonly used for solving CSPs. Inference can be
interwoven with search.

• Commutativity: CSPs are all commutative. A problem
is commutative if the order of application of any
given set of actions has no effect on the outcome.

• Backtracking search: A depth-first search that
chooses values for one variable at a time and
backtracks when a variable has no legal values left
to assign.

Backtracking search for CSPs

• Backtracking algorithm repeatedly chooses an
unassigned variable, and then tries all values in the
domain of that variable in turn, trying to find a solution.
If an inconsistency is detected, then BACKTRACK returns
failure, causing the previous call to try another value.

• There is no need to supply BACKTRACKING-SEARCH
with a domain-specific initial state, action function,
transition model, or goal test.

• BACKTRACKING-SARCH keeps only a single
representation of a state and alters that representation
rather than creating a new ones.

Backtracking search for CSPs

Backtracking search for CSPs

• To solve CSPs efficiently without domain-specific
knowledge, address following questions:

• 1)function SELECT-UNASSIGNED-VARIABLE: which
variable should be assigned next?

• function ORDER-DOMAIN-VALUES: in what order
should its values be tried?

• 2)function INFERENCE: what inferences should be
performed at each step in the search?

• 3)When the search arrives at an assignment that
violates a constraint, can the search avoid repeating
this failure?

Intelligent backtracking

Local search for CSPs

• Local search algorithms for CSPs use a
complete-state formulation: the initial state
assigns a value to every variable, and the search
change the value of one variable at a time.

• The min-conflicts heuristic: In choosing a new
value for a variable, select the value that results
in the minimum number of conflicts with other
variables.

Local search for CSPs

Local search for CSPs

• The landscape of a CSP under the mini-conflicts
heuristic usually has a series of plateau. Simulated
annealing and Plateau search (i.e. allowing sideways
moves to another state with the same score) can
help local search find its way off the plateau.

• This wandering on the plateau can be directed with
tabu search: keeping a small list of recently visited
states and forbidding the algorithm to return to
those tates.

Local search for CSPs

• Constraint weighting: a technique that can help
concentrate the search on the important constraints.

• Each constraint is given a numeric weight Wi, initially all 1.

• At each step, the algorithm chooses a variable/value pair to
change that will result in the lowest total weight of all
violated constraints.

• The weights are then adjusted by incrementing the weight
of each constraint that is violated by the current
assignment.

• Local search can be used in an online setting when the
problem changes, this is particularly important in
scheduling problems.

Structure of Problem

The structure of constraint graph

• The structure of the problem as represented by the
constraint graph can be used to find solution quickly.

• e.g. The problem can be decomposed into 2 independent
subproblems: Coloring T and coloring the mainland.

• Tree: A constraint graph is a tree when any two varyiable
are connected by only one path.

• Directed arc consistency (DAC): A CSP is defined to be
directed arc-consistent under an ordering of variables X1,
X2, … , Xn if and only if every Xi is arc-consistent with each
Xj for j>i.

• By using DAC, any tree-structured CSP can be solved in time
linear in the number of variables.

The structure of constraint graph

• Pick any variable to be the root of the tree;

• Choose an ordering of the variable such that each variable
appears after its parent in the tree. (topological sort)

• Any tree with n nodes has n-1 arcs, so we can make this graph
directed arc-consistent in O(n) steps, each of which must
compare up to d possible domain values for 2 variables, for a
total time of O(nd2)

• Once we have a directed arc-consistent graph, we can just
march down the list of variables and choose any remaining
value.

• Since each link from a parent to its child is arc consistent, we
won’t have to backtrack, and can move linearly through the
variables.

The structure of constraint graph

The structure of constraint graph

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 7.0.1.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies MITUSkillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

