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Search Algorithm

• The objective of every problem-solving 
technique is one, i.e., to find a solution to reach 
the goal. 

• Although, in adversarial search and local search, 
there were no constraints on the agents while 
solving the problems and reaching to its 
solutions.



Constraint satisfaction

• Constraint satisfaction is a technique where a problem is 
solved when its values satisfy certain constraints or rules of 
the problem. Such type of technique leads to a deeper 
understanding of the problem structure as well as its 
complexity.

• Constraint satisfaction depends on three components, 
namely:
– X: It is a set of variables.
– D: It is a set of domains where the variables reside. There 

is a specific domain for each variable.
– C: It is a set of constraints which are followed by the set 

of variables.



Constraint satisfaction

• In constraint satisfaction, domains are the spaces 
where the variables reside, following the problem 
specific constraints. 

• These are the three main elements of a constraint 
satisfaction technique. The constraint value 
consists of a pair of {scope, rel}. 

• The scope is a tuple of variables which participate 
in the constraint and rel is a relation which 
includes a list of values which the variables can 
take to satisfy the constraints of the problem.



Constraint satisfaction

• Solving Constraint Satisfaction Problems

• The requirements to solve a constraint 
satisfaction problem (CSP) is:
– A state-space
– The notion of the solution.

• A state in state-space is defined by assigning 
values to some or all variables such as

{X1=v1, X2=v2, and so on…}.



Constraint satisfaction

• An assignment of values to a variable can be done in three 
ways:
– Consistent or Legal Assignment: An assignment which 

does not violate any constraint or rule is called 
Consistent or legal assignment.

– Complete Assignment: An assignment where every 
variable is assigned with a value, and the solution to the 
CSP remains consistent. Such assignment is known as 
Complete assignment.

– Partial Assignment: An assignment which assigns values 
to some of the variables only. Such type of assignments 
are called Partial assignments.



Types of Domains in CSP

• There are following two types of domains which 
are used by the variables :
– Discrete Domain: It is an infinite domain 

which can have one state for multiple 
variables. For example, a start state can be 
allocated infinite times for each variable.

– Finite Domain: It is a finite domain which can 
have continuous states describing one 
domain for one specific variable. It is also 
called a continuous domain.



Constraint Types in CSP

• With respect to the variables, basically there are 
following types of constraints:
– Unary Constraints: It is the simplest type of 

constraints that restricts the value of a single 
variable.

– Binary Constraints: It is the constraint type 
which relates two variables. A value x2 will 
contain a value which lies between x1 and x3.

– Global Constraints: It is the constraint type 
which involves an arbitrary number of variables.



Constraint Types in CSP

• Some special types of solution algorithms are 
used to solve the following types of constraints:
– Linear Constraints: These type of constraints 

are commonly used in linear programming 
where each variable containing an integer 
value exists in linear form only.

– Non-linear Constraints: These type of 
constraints are used in non-linear 
programming where each variable (an integer 
value) exists in a non-linear form.



Constraint Propagation

• In local state-spaces, the choice is only one, i.e., to 
search for a solution. But in CSP, we have two choices 
either:
– We can search for a solution or
– We can perform a special type of inference called 

constraint propagation.

• Constraint propagation is a special type of inference 
which helps in reducing the legal number of values for 
the variables. 

• The idea behind constraint propagation is local 
consistency.



Local consistency

• In local consistency, variables are treated as nodes, 
and each binary constraint is treated as an arc in the 
given problem. There are following local 
consistencies which are discussed below:
– Node Consistency: A single variable is said to be 

node consistent if all the values in the variable’s 
domain satisfy the unary constraints on the 
variables.

– Arc Consistency: A variable is arc consistent if 
every value in its domain satisfies the binary 
constraints of the variables.



Local consistency

• Path Consistency: When the evaluation of a set 
of two variable with respect to a third variable 
can be extended over another variable, 
satisfying all the binary constraints. It is similar 
to arc consistency.

• k-consistency: This type of consistency is used 
to define the notion of stronger forms of 
propagation. Here, we examine the k-
consistency of the variables.



CSP Problems

• Constraint satisfaction includes those problems 
which contains some constraints while solving the 
problem. CSP includes the following problems:

• Graph Coloring: The problem where the constraint 
is that no adjacent sides can have the same color.



CSP Problems

• Sudoku Playing: The gameplay where the 
constraint is that no number from 0-9 can be 
repeated in the same row or column.



Inference in CSPs

• A number of inference techniques use the constraints to 
infer which variable/value pairs are consistent and which 
are not. These include node, arc, path, and k-consistent.

• constraint propagation: Using the constraints to reduce 
the number of legal values for a variable, which in turn 
can reduce the legal values for another variable, and so 
on.

• local consistency: If we treat each variable as a node in a 
graph and each binary constraint as an arc, then the 
process of enforcing local consistency in each part of the 
graph causes inconsistent values to be eliminated 
throughout the graph.



Inference in CSPs

• Node consistency
– A single variable (a node in the CSP network) 

is node-consistent if all the values in the 
variable’s domain satisfy the variable’s unary 
constraint.

– We say that a network is node-consistent if 
every variable in the network is node-
consistent.



Inference in CSPs

• Arc consistency
– A variable in a CSP is arc-consistent if every value in 

its domain satisfies the variable’s binary constraints.
– Xi is arc-consistent with respect to another variable 

Xj if for every value in the current domain Di there is 
some value in the domain Dj that satisfies the binary 
constraint on the arc (Xi, Xj).

– A network is arc-consistent if every variable is arc-
consistent with every other variable.

– Arc consistency tightens down the domains (unary 
constraint) using the arcs (binary constraints).



Inference in CSPs

• Path consistency
– Path consistency: A two-variable set {Xi, Xj} is 

path-consistent with respect to a third 
variable Xm if, for every assignment {Xi = a, Xj 
= b} consistent with the constraint on {Xi, Xj}, 
there is an assignment to Xm that satisfies 
the constraints on {Xi, Xm} and {Xm, Xj}.

– Path consistency tightens the binary 
constraints by using implicit constraints that 
are inferred by looking at triples of variables.



Inference in CSPs

• K-consistency
– K-consistency: A CSP is k-consistent if, for any set of k-1 

variables and for any consistent assignment to those variables, 
a consistent value can always be assigned to any kth variable.

– 1-consistency = node consistency; 2-consisency = arc 
consistency; 3-consistensy = path consistency.

– A CSP is strongly k-consistent if it is k-consistent and is also (k - 
1)-consistent, (k – 2)-consistent, … all the way down to 1-
consistent.

– A CSP with n nodes and make it strongly n-consistent, we are 
guaranteed to find a solution in time O(n2d). But algorithm for 
establishing n-consitentcy must take time exponential in n in 
the worse case, also requires space that is exponential in n.



Inference in CSPs

• Global constraints
– A global constraint is one involving an 

arbitrary number of variables (but not 
necessarily all variables). 

– Global constraints can be handled by special-
purpose algorithms that are more efficient 
than general-purpose methods.



Global constraints

• 1) inconsistency detection for Alldiff constraints
– A simple algorithm: First remove any variable in the 

constraint that has a singleton domain, and delete 
that variable’s value from the domains of the 
remaining variables. Repeat as long as there are 
singleton variables. If at any point an empty domain is 
produced or there are more vairables than domain 
values left, then an inconsistency has been detected.

– A simple consistency procedure for a higher-order 
constraint is sometimes more effective than applying 
arc consistency to an equivalent set of binary 
constrains.



Global constraints

• 2) inconsistency detection for resource constraint (the atmost 
constraint)

• We can detect an inconsistency simply by checking the sum of the 
minimum of the current domains;

• e.g. Atmost(10, P1, P2, P3, P4): no more than 10 personnel are 
assigned in total.

• If each variable has the domain {3, 4, 5, 6}, the Atmost constraint 
cannot be satisfied.

• We can enforce consistency by deleting the maximum value of 
any domain if it is not consistent with the minimum values of the 
other domains.

• e.g. If each variable in the example has the domain {2, 3, 4, 5, 6}, 
the values 5 and 6 can be deleted from each domain.



Global constraints

• 3) inconsistency detection for bounds consistent

• For large resource-limited problems with integer 
values, domains are represented by upper and lower 
bounds and are managed by bounds propagation.

• e.g. suppose there are two flights F1 and F2 in an 
airline-scheduling problem, for which the planes 
have capacities 165 and 385, respectively. The initial 
domains for the numbers of passengers on each 
flight are

• D1 = [0, 165] and D2 = [0, 385].



Global constraints

• Now suppose we have the additional constraint 
that the two flight together must carry 420 
people: F1 + F2 = 420. Propagating bounds 
constraints, we reduce the domains to

D1 = [35, 165] and D2 = [255, 385].

• A CSP is bounds consistent if for every variable 
X, and for both the lower-bound and upper-
bound values of X, there exists some value of Y 
that satisfies the constraint between X and Y 
for every variable Y.



Sudoku 

• A Sudoku puzzle can be considered a CSP with 
81 variables, one for each square. We use the 
variable names A1 through A9 for the top row 
(left to right), down to I1 through I9 for the 
bottom row. 

• The empty squares have the domain {1, 2, 3, 4, 
5, 6, 7, 8, 9} and the pre-filled squares have a 
domain consisting of a single value.



Sudoku 

• There are 27 different Alldiff constraints: one for each row, column, and box of 9 squares:

•

• Alldiff(A1, A2, A3, A4, A5, A6, A7, A8, A9)

•

• Alldiff(B1, B2, B3, B4, B5, B6, B7, B8, B9)

•

• …

•

• Alldiff(A1, B1, C1, D1, E1, F1, G1, H1, I1)

•

• Alldiff(A2, B2, C2, D2, E2, F2, G2, H2, I2)

•

• …

•

• Alldiff(A1, A2, A3, B1, B2, B3, C1, C2, C3)

•

• Alldiff(A4, A5, A6, B4, B5, B6, C4, C5, C6)

•

• …



Backtracking search for CSPs

• Backtracking search, a form of depth-first search, is 
commonly used for solving CSPs. Inference can be 
interwoven with search.

• Commutativity: CSPs are all commutative. A problem 
is commutative if the order of application of any 
given set of actions has no effect on the outcome.

• Backtracking search: A depth-first search that 
chooses values for one variable at a time and 
backtracks when a variable has no legal values left 
to assign.



Backtracking search for CSPs

• Backtracking algorithm repeatedly chooses an 
unassigned variable, and then tries all values in the 
domain of that variable in turn, trying to find a solution. 
If an inconsistency is detected, then BACKTRACK returns 
failure, causing the previous call to try another value.

• There is no need to supply BACKTRACKING-SEARCH 
with a domain-specific initial state, action function, 
transition model, or goal test.

• BACKTRACKING-SARCH keeps only a single 
representation of a state and alters that representation 
rather than creating a new ones.



Backtracking search for CSPs



Backtracking search for CSPs

• To solve CSPs efficiently without domain-specific 
knowledge, address following questions:

• 1)function SELECT-UNASSIGNED-VARIABLE: which 
variable should be assigned next?

• function ORDER-DOMAIN-VALUES: in what order 
should its values be tried?

• 2)function INFERENCE: what inferences should be 
performed at each step in the search?

• 3)When the search arrives at an assignment that 
violates a constraint, can the search avoid repeating 
this failure?



Intelligent backtracking



Local search for CSPs

• Local search algorithms for CSPs use a 
complete-state formulation: the initial state 
assigns a value to every variable, and the search 
change the value of one variable at a time.

• The min-conflicts heuristic: In choosing a new 
value for a variable, select the value that results 
in the minimum number of conflicts with other 
variables.



Local search for CSPs



Local search for CSPs

• The landscape of a CSP under the mini-conflicts 
heuristic usually has a series of plateau. Simulated 
annealing and Plateau search (i.e. allowing sideways 
moves to another state with the same score) can 
help local search find its way off the plateau. 

• This wandering on the plateau can be directed with 
tabu search: keeping a small list of recently visited 
states and forbidding the algorithm to return to 
those tates.



Local search for CSPs

• Constraint weighting: a technique that can help 
concentrate the search on the important constraints.

• Each constraint is given a numeric weight Wi, initially all 1.

• At each step, the algorithm chooses a variable/value pair to 
change that will result in the lowest total weight of all 
violated constraints.

• The weights are then adjusted by incrementing the weight 
of each constraint that is violated by the current 
assignment.

• Local search can be used in an online setting when the 
problem changes, this is particularly important in 
scheduling problems.



Structure of Problem



The structure of constraint graph

• The structure of the problem as represented by the 
constraint graph can be used to find solution quickly.

• e.g. The problem can be decomposed into 2 independent 
subproblems: Coloring T and coloring the mainland.

• Tree: A constraint graph is a tree when any two varyiable 
are connected by only one path.

• Directed arc consistency (DAC): A CSP is defined to be 
directed arc-consistent under an ordering of variables X1, 
X2, … , Xn if and only if every Xi is arc-consistent with each 
Xj for j>i.

• By using DAC, any tree-structured CSP can be solved in time 
linear in the number of variables.



The structure of constraint graph

• Pick any variable to be the root of the tree;

• Choose an ordering of the variable such that each variable 
appears after its parent in the tree. (topological sort)

• Any tree with n nodes has n-1 arcs, so we can make this graph 
directed arc-consistent in O(n) steps, each of which must 
compare up to d possible domain values for 2 variables, for a 
total time of O(nd2)

• Once we have a directed arc-consistent graph, we can just 
march down the list of variables and choose any remaining 
value.

• Since each link from a parent to its child is arc consistent, we 
won’t have to backtrack, and can move linearly through the 
variables.



The structure of constraint graph



The structure of constraint graph
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