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Adversarial Search

• Adversarial search is a search, where we examine the 
problem which arises when we try to plan ahead of 
the world and other agents are planning against us.
– In previous topics, we have studied the search 

strategies which are only associated with a single 
agent that aims to find the solution which often 
expressed in the form of a sequence of actions.

– But, there might be some situations where more 
than one agent is searching for the solution in the 
same search space, and this situation usually 
occurs in game playing.



Adversarial Search

• The environment with more than one agent is termed as 
multi-agent environment, in which each agent is an 
opponent of other agent and playing against each other. 
Each agent needs to consider the action of other agent 
and effect of that action on their performance.

• So, Searches in which two or more players with 
conflicting goals are trying to explore the same search 
space for the solution, are called adversarial searches, 
often known as Games.

• Games are modeled as a Search problem and heuristic 
evaluation function, and these are the two main factors 
which help to model and solve games in AI.



Types of Games in AI



Types of Games in AI

• Perfect information: A game with the perfect 
information is that in which agents can look into 
the complete board. Agents have all the 
information about the game, and they can see each 
other moves also. Examples are Chess, Checkers, 
Go, etc.

• Imperfect information: If in a game agents do not 
have all information about the game and not aware 
with what's going on, such type of games are called 
the game with imperfect information, such as tic-
tac-toe, Battleship, blind, Bridge, etc.



Types of Games in AI

• Deterministic games: Deterministic games are those 
games which follow a strict pattern and set of rules for 
the games, and there is no randomness associated with 
them. Examples are chess, Checkers, Go, tic-tac-toe, etc.

• Non-deterministic games: Non-deterministic are those 
games which have various unpredictable events and has 
a factor of chance or luck. This factor of chance or luck 
is introduced by either dice or cards. These are random, 
and each action response is not fixed. Such games are 
also called as stochastic games.

• Example: Backgammon, Monopoly, Poker, etc. 



Zero-sum game: Embedded thinking

• The Zero-sum game involved embedded thinking in 
which one agent or player is trying to figure out:
– What to do.
– How to decide the move
– Needs to think about his opponent as well
– The opponent also thinks what to do

• Each of the players is trying to find out the response 
of his opponent to their actions. 

• This requires embedded thinking or backward 
reasoning to solve the game problems in AI. 



Formalization of the problem

• A game can be defined as a type of search in AI 
which can be formalized of the following elements:
– Initial state: It specifies how the game is set up 

at the start.
– Player(s): It specifies which player has moved in 

the state space.
– Action(s): It returns the set of legal moves in 

state space.
– Result(s, a): It is the transition model, which 

specifies the result of moves in the state space.



Formalization of the problem

• Terminal-Test(s): Terminal test is true if the game 
is over, else it is false at any case. The state 
where the game ends is called terminal states.

• Utility(s, p): A utility function gives the final 
numeric value for a game that ends in terminal 
states s for player p. It is also called payoff 
function. 
– For Chess, the outcomes are a win, loss, or 

draw and its payoff values are +1, 0, ½. And for 
tic-tac-toe, utility values are +1, -1, and 0. 



Game tree

• A game tree is a tree where nodes of the tree are the game 
states and Edges of the tree are the moves by players. Game 
tree involves initial state, actions function, and result 
Function.

• Example: Tic-Tac-Toe game tree:

• The following figure is showing part of the game-tree for tic-
tac-toe game. Following are some key points of the game:
– There are two players MAX and MIN.
– Players have an alternate turn and start with MAX.
– MAX maximizes the result of the game tree
– MIN minimizes the result.



Game tree



Game tree

• From the initial state, MAX has 9 possible moves as he 
starts first. MAX place x and MIN place o, and both player 
plays alternatively until we reach a leaf node where one 
player has three in a row or all squares are filled.

• Both players will compute each node, minimax, the 
minimax value which is the best achievable utility against 
an optimal adversary.

• Suppose both the players are well aware of the tic-tac-
toe and playing the best play. Each player is doing his 
best to prevent another one from winning. MIN is acting 
against Max in the game.



Game tree

• So in the game tree, we have a layer of Max, a 
layer of MIN, and each layer is called as Ply. Max 
place x, then MIN puts o to prevent Max from 
winning, and this game continues until the 
terminal node.

• In this either MIN wins, MAX wins, or it's a draw. 
This game-tree is the whole search space of 
possibilities that MIN and MAX are playing tic-
tac-toe and taking turns alternately.



Game tree

• Hence adversarial Search for the minimax 
procedure works as follows:
– It aims to find the optimal strategy for MAX 

to win the game.
– It follows the approach of Depth-first search.
– In the game tree, optimal leaf node could 

appear at any depth of the tree.
– Propagate the minimax values up to the tree 

until the terminal node discovered.



Game tree

• In a given game tree, the optimal strategy can 
be determined from the minimax value of each 
node, which can be written as MINIMAX(n). MAX 
prefer to move to a state of maximum value and 
MIN prefer to move to a state of minimum value 
then:



Mini-Max Algorithm

• Mini-max algorithm is a recursive or backtracking 
algorithm which is used in decision-making and game 
theory. It provides an optimal move for the player 
assuming that opponent is also playing optimally.

• Mini-Max algorithm uses recursion to search through the 
game-tree.

• Min-Max algorithm is mostly used for game playing in AI. 
Such as Chess, Checkers, tic-tac-toe, go, and various tow-
players game. This Algorithm computes the minimax 
decision for the current state.

• In this algorithm two players play the game, one is called 
MAX and other is called MIN.



Mini-Max Algorithm

• Both the players fight it as the opponent player gets the 
minimum benefit while they get the maximum benefit.

• Both Players of the game are opponent of each other, 
where MAX will select the maximized value and MIN will 
select the minimized value.

• The minimax algorithm performs a depth-first search 
algorithm for the exploration of the complete game 
tree.

• The minimax algorithm proceeds all the way down to the 
terminal node of the tree, then backtrack the tree as the 
recursion. 



Pseudo-code for MinMax Algorithm

•     function minimax(node, depth, maximizingPlayer) is  

•     if depth ==0 or node is a terminal node then  

•     return static evaluation of node  

•     if MaximizingPlayer then      // for Maximizer Player  

•     maxEva= -infinity            

•      for each child of node do  

•      eva= minimax(child, depth-1, false)  

•     maxEva= max(maxEva,eva)        //gives Maximum of the values  

•     return maxEva  

•     else                         // for Minimizer player  

•      minEva= +infinity   

•      for each child of node do  

•      eva= minimax(child, depth-1, true)  

•      minEva= min(minEva, eva)         //gives minimum of the values  

•      return minEva  



Initial Call

• Minimax(node, 3, true)

• Working of Min-Max Algorithm:
– The working of the minimax algorithm can be easily 

described using an example. Below we have taken 
an example of game-tree which is representing the 
two-player game.

– In this example, there are two players one is called 
Maximizer and other is called Minimizer.

– Maximizer will try to get the Maximum possible 
score, and Minimizer will try to get the minimum 
possible score.



Initial Call

– This algorithm applies DFS, so in this game-
tree, we have to go all the way through the 
leaves to reach the terminal nodes.

– At the terminal node, the terminal values are 
given so we will compare those value and 
backtrack the tree until the initial state 
occurs. 



Step-I 

• In the first step, the algorithm generates the 
entire game-tree and apply the utility function 
to get the utility values for the terminal states. 
In the below tree diagram, let's take A is the 
initial state of the tree. Suppose maximizer 
takes first turn which has worst-case initial 
value =- infinity, and minimizer will take next 
turn which has worst-case initial value = 
+infinity.



Step-I 



Step-II 

• Now, first we find the utilities value for the 
Maximizer, its initial value is -∞, so we will compare 
each value in terminal state with initial value of 
Maximizer and determines the higher nodes values. 
It will find the maximum among the all.

    For node D         max(-1,- -∞) => max(-1,4)= 4

    For Node E         max(2, -∞) => max(2, 6)= 6

    For Node F         max(-3, -∞) => max(-3,-5) = -3

    For node G         max(0, -∞) = max(0, 7) = 7



Step-II 



Step-III 

• In the next step, it's a turn for minimizer, so it 
will compare all nodes value with +∞, and will 
find the 3rd layer node values.

    For node B= min(4,6) = 4

    For node C= min (-3, 7) = -3



Step-III 



Step-IV 

• Now it's a turn for Maximizer, and it will again 
choose the maximum of all nodes value and find 
the maximum value for the root node. In this 
game tree, there are only 4 layers, hence we 
reach immediately to the root node, but in real 
games, there will be more than 4 layers.

    For node A max(4, -3)= 4



Step-IV 

That was the complete workflow of the 
minimax two player game. 



Properties of Mini-Max algorithm

• Complete- Min-Max algorithm is Complete. It will 
definitely find a solution (if exist), in the finite search 
tree.

• Optimal- Min-Max algorithm is optimal if both 
opponents are playing optimally.

• Time complexity- As it performs DFS for the game-
tree, so the time complexity of Min-Max algorithm is 
O(bm), where b is branching factor of the game-tree, 
and m is the maximum depth of the tree.

• Space Complexity- Space complexity of Mini-max 
algorithm is also similar to DFS which is O(bm).



Limitation of the minimax Algorithm

• The main drawback of the minimax algorithm is 
that it gets really slow for complex games such 
as Chess, go, etc. 

• This type of games has a huge branching factor, 
and the player has lots of choices to decide. 

• This limitation of the minimax algorithm can be 
improved from alpha-beta pruning 



Inference in CSPs

• Path consistency
– Path consistency: A two-variable set {Xi, Xj} is 

path-consistent with respect to a third 
variable Xm if, for every assignment {Xi = a, Xj 
= b} consistent with the constraint on {Xi, Xj}, 
there is an assignment to Xm that satisfies 
the constraints on {Xi, Xm} and {Xm, Xj}.

– Path consistency tightens the binary 
constraints by using implicit constraints that 
are inferred by looking at triples of variables.



Inference in CSPs

• K-consistency
– K-consistency: A CSP is k-consistent if, for any set of k-1 

variables and for any consistent assignment to those variables, 
a consistent value can always be assigned to any kth variable.

– 1-consistency = node consistency; 2-consisency = arc 
consistency; 3-consistensy = path consistency.

– A CSP is strongly k-consistent if it is k-consistent and is also (k - 
1)-consistent, (k – 2)-consistent, … all the way down to 1-
consistent.

– A CSP with n nodes and make it strongly n-consistent, we are 
guaranteed to find a solution in time O(n2d). But algorithm for 
establishing n-consitentcy must take time exponential in n in 
the worse case, also requires space that is exponential in n.



Inference in CSPs

• Global constraints
– A global constraint is one involving an 

arbitrary number of variables (but not 
necessarily all variables). 

– Global constraints can be handled by special-
purpose algorithms that are more efficient 
than general-purpose methods.



Global constraints

• 1) inconsistency detection for Alldiff constraints
– A simple algorithm: First remove any variable in the 

constraint that has a singleton domain, and delete 
that variable’s value from the domains of the 
remaining variables. Repeat as long as there are 
singleton variables. If at any point an empty domain is 
produced or there are more vairables than domain 
values left, then an inconsistency has been detected.

– A simple consistency procedure for a higher-order 
constraint is sometimes more effective than applying 
arc consistency to an equivalent set of binary 
constrains.



Global constraints

• 2) inconsistency detection for resource constraint (the atmost 
constraint)

• We can detect an inconsistency simply by checking the sum of the 
minimum of the current domains;

• e.g. Atmost(10, P1, P2, P3, P4): no more than 10 personnel are 
assigned in total.

• If each variable has the domain {3, 4, 5, 6}, the Atmost constraint 
cannot be satisfied.

• We can enforce consistency by deleting the maximum value of 
any domain if it is not consistent with the minimum values of the 
other domains.

• e.g. If each variable in the example has the domain {2, 3, 4, 5, 6}, 
the values 5 and 6 can be deleted from each domain.



Global constraints

• 3) inconsistency detection for bounds consistent

• For large resource-limited problems with integer 
values, domains are represented by upper and lower 
bounds and are managed by bounds propagation.

• e.g. suppose there are two flights F1 and F2 in an 
airline-scheduling problem, for which the planes 
have capacities 165 and 385, respectively. The initial 
domains for the numbers of passengers on each 
flight are

• D1 = [0, 165] and D2 = [0, 385].



Global constraints

• Now suppose we have the additional constraint 
that the two flight together must carry 420 
people: F1 + F2 = 420. Propagating bounds 
constraints, we reduce the domains to

D1 = [35, 165] and D2 = [255, 385].

• A CSP is bounds consistent if for every variable 
X, and for both the lower-bound and upper-
bound values of X, there exists some value of Y 
that satisfies the constraint between X and Y 
for every variable Y.



Sudoku 

• A Sudoku puzzle can be considered a CSP with 
81 variables, one for each square. We use the 
variable names A1 through A9 for the top row 
(left to right), down to I1 through I9 for the 
bottom row. 

• The empty squares have the domain {1, 2, 3, 4, 
5, 6, 7, 8, 9} and the pre-filled squares have a 
domain consisting of a single value.



Sudoku 

• There are 27 different Alldiff constraints: one for each row, column, and box of 9 squares:

•

• Alldiff(A1, A2, A3, A4, A5, A6, A7, A8, A9)

•

• Alldiff(B1, B2, B3, B4, B5, B6, B7, B8, B9)

•

• …

•

• Alldiff(A1, B1, C1, D1, E1, F1, G1, H1, I1)

•

• Alldiff(A2, B2, C2, D2, E2, F2, G2, H2, I2)

•

• …

•

• Alldiff(A1, A2, A3, B1, B2, B3, C1, C2, C3)

•

• Alldiff(A4, A5, A6, B4, B5, B6, C4, C5, C6)

•

• …



Backtracking search for CSPs

• Backtracking search, a form of depth-first search, is 
commonly used for solving CSPs. Inference can be 
interwoven with search.

• Commutativity: CSPs are all commutative. A problem 
is commutative if the order of application of any 
given set of actions has no effect on the outcome.

• Backtracking search: A depth-first search that 
chooses values for one variable at a time and 
backtracks when a variable has no legal values left 
to assign.



Backtracking search for CSPs

• Backtracking algorithm repeatedly chooses an 
unassigned variable, and then tries all values in the 
domain of that variable in turn, trying to find a solution. 
If an inconsistency is detected, then BACKTRACK returns 
failure, causing the previous call to try another value.

• There is no need to supply BACKTRACKING-SEARCH 
with a domain-specific initial state, action function, 
transition model, or goal test.

• BACKTRACKING-SARCH keeps only a single 
representation of a state and alters that representation 
rather than creating a new ones.



Backtracking search for CSPs



Backtracking search for CSPs

• To solve CSPs efficiently without domain-specific 
knowledge, address following questions:

• 1)function SELECT-UNASSIGNED-VARIABLE: which 
variable should be assigned next?

• function ORDER-DOMAIN-VALUES: in what order 
should its values be tried?

• 2)function INFERENCE: what inferences should be 
performed at each step in the search?

• 3)When the search arrives at an assignment that 
violates a constraint, can the search avoid repeating 
this failure?



Intelligent backtracking



Local search for CSPs

• Local search algorithms for CSPs use a 
complete-state formulation: the initial state 
assigns a value to every variable, and the search 
change the value of one variable at a time.

• The min-conflicts heuristic: In choosing a new 
value for a variable, select the value that results 
in the minimum number of conflicts with other 
variables.



Local search for CSPs



Local search for CSPs

• The landscape of a CSP under the mini-conflicts 
heuristic usually has a series of plateau. Simulated 
annealing and Plateau search (i.e. allowing sideways 
moves to another state with the same score) can 
help local search find its way off the plateau. 

• This wandering on the plateau can be directed with 
tabu search: keeping a small list of recently visited 
states and forbidding the algorithm to return to 
those tates.



Local search for CSPs

• Constraint weighting: a technique that can help 
concentrate the search on the important constraints.

• Each constraint is given a numeric weight Wi, initially all 1.

• At each step, the algorithm chooses a variable/value pair to 
change that will result in the lowest total weight of all 
violated constraints.

• The weights are then adjusted by incrementing the weight 
of each constraint that is violated by the current 
assignment.

• Local search can be used in an online setting when the 
problem changes, this is particularly important in 
scheduling problems.



Structure of Problem



The structure of constraint graph

• The structure of the problem as represented by the 
constraint graph can be used to find solution quickly.

• e.g. The problem can be decomposed into 2 independent 
subproblems: Coloring T and coloring the mainland.

• Tree: A constraint graph is a tree when any two varyiable 
are connected by only one path.

• Directed arc consistency (DAC): A CSP is defined to be 
directed arc-consistent under an ordering of variables X1, 
X2, … , Xn if and only if every Xi is arc-consistent with each 
Xj for j>i.

• By using DAC, any tree-structured CSP can be solved in time 
linear in the number of variables.



The structure of constraint graph

• Pick any variable to be the root of the tree;

• Choose an ordering of the variable such that each variable 
appears after its parent in the tree. (topological sort)

• Any tree with n nodes has n-1 arcs, so we can make this graph 
directed arc-consistent in O(n) steps, each of which must 
compare up to d possible domain values for 2 variables, for a 
total time of O(nd2)

• Once we have a directed arc-consistent graph, we can just 
march down the list of variables and choose any remaining 
value.

• Since each link from a parent to its child is arc consistent, we 
won’t have to backtrack, and can move linearly through the 
variables.



The structure of constraint graph



The structure of constraint graph
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