
Games

Tushar B. Kute,
http://tusharkute.com

Adversarial Search

• Adversarial search is a search, where we examine the
problem which arises when we try to plan ahead of
the world and other agents are planning against us.
– In previous topics, we have studied the search

strategies which are only associated with a single
agent that aims to find the solution which often
expressed in the form of a sequence of actions.

– But, there might be some situations where more
than one agent is searching for the solution in the
same search space, and this situation usually
occurs in game playing.

Adversarial Search

• The environment with more than one agent is termed as
multi-agent environment, in which each agent is an
opponent of other agent and playing against each other.
Each agent needs to consider the action of other agent
and effect of that action on their performance.

• So, Searches in which two or more players with
conflicting goals are trying to explore the same search
space for the solution, are called adversarial searches,
often known as Games.

• Games are modeled as a Search problem and heuristic
evaluation function, and these are the two main factors
which help to model and solve games in AI.

Types of Games in AI

Types of Games in AI

• Perfect information: A game with the perfect
information is that in which agents can look into
the complete board. Agents have all the
information about the game, and they can see each
other moves also. Examples are Chess, Checkers,
Go, etc.

• Imperfect information: If in a game agents do not
have all information about the game and not aware
with what's going on, such type of games are called
the game with imperfect information, such as tic-
tac-toe, Battleship, blind, Bridge, etc.

Types of Games in AI

• Deterministic games: Deterministic games are those
games which follow a strict pattern and set of rules for
the games, and there is no randomness associated with
them. Examples are chess, Checkers, Go, tic-tac-toe, etc.

• Non-deterministic games: Non-deterministic are those
games which have various unpredictable events and has
a factor of chance or luck. This factor of chance or luck
is introduced by either dice or cards. These are random,
and each action response is not fixed. Such games are
also called as stochastic games.

• Example: Backgammon, Monopoly, Poker, etc.

Zero-sum game: Embedded thinking

• The Zero-sum game involved embedded thinking in
which one agent or player is trying to figure out:
– What to do.
– How to decide the move
– Needs to think about his opponent as well
– The opponent also thinks what to do

• Each of the players is trying to find out the response
of his opponent to their actions.

• This requires embedded thinking or backward
reasoning to solve the game problems in AI.

Formalization of the problem

• A game can be defined as a type of search in AI
which can be formalized of the following elements:
– Initial state: It specifies how the game is set up

at the start.
– Player(s): It specifies which player has moved in

the state space.
– Action(s): It returns the set of legal moves in

state space.
– Result(s, a): It is the transition model, which

specifies the result of moves in the state space.

Formalization of the problem

• Terminal-Test(s): Terminal test is true if the game
is over, else it is false at any case. The state
where the game ends is called terminal states.

• Utility(s, p): A utility function gives the final
numeric value for a game that ends in terminal
states s for player p. It is also called payoff
function.
– For Chess, the outcomes are a win, loss, or

draw and its payoff values are +1, 0, ½. And for
tic-tac-toe, utility values are +1, -1, and 0.

Game tree

• A game tree is a tree where nodes of the tree are the game
states and Edges of the tree are the moves by players. Game
tree involves initial state, actions function, and result
Function.

• Example: Tic-Tac-Toe game tree:

• The following figure is showing part of the game-tree for tic-
tac-toe game. Following are some key points of the game:
– There are two players MAX and MIN.
– Players have an alternate turn and start with MAX.
– MAX maximizes the result of the game tree
– MIN minimizes the result.

Game tree

Game tree

• From the initial state, MAX has 9 possible moves as he
starts first. MAX place x and MIN place o, and both player
plays alternatively until we reach a leaf node where one
player has three in a row or all squares are filled.

• Both players will compute each node, minimax, the
minimax value which is the best achievable utility against
an optimal adversary.

• Suppose both the players are well aware of the tic-tac-
toe and playing the best play. Each player is doing his
best to prevent another one from winning. MIN is acting
against Max in the game.

Game tree

• So in the game tree, we have a layer of Max, a
layer of MIN, and each layer is called as Ply. Max
place x, then MIN puts o to prevent Max from
winning, and this game continues until the
terminal node.

• In this either MIN wins, MAX wins, or it's a draw.
This game-tree is the whole search space of
possibilities that MIN and MAX are playing tic-
tac-toe and taking turns alternately.

Game tree

• Hence adversarial Search for the minimax
procedure works as follows:
– It aims to find the optimal strategy for MAX

to win the game.
– It follows the approach of Depth-first search.
– In the game tree, optimal leaf node could

appear at any depth of the tree.
– Propagate the minimax values up to the tree

until the terminal node discovered.

Game tree

• In a given game tree, the optimal strategy can
be determined from the minimax value of each
node, which can be written as MINIMAX(n). MAX
prefer to move to a state of maximum value and
MIN prefer to move to a state of minimum value
then:

Mini-Max Algorithm

• Mini-max algorithm is a recursive or backtracking
algorithm which is used in decision-making and game
theory. It provides an optimal move for the player
assuming that opponent is also playing optimally.

• Mini-Max algorithm uses recursion to search through the
game-tree.

• Min-Max algorithm is mostly used for game playing in AI.
Such as Chess, Checkers, tic-tac-toe, go, and various tow-
players game. This Algorithm computes the minimax
decision for the current state.

• In this algorithm two players play the game, one is called
MAX and other is called MIN.

Mini-Max Algorithm

• Both the players fight it as the opponent player gets the
minimum benefit while they get the maximum benefit.

• Both Players of the game are opponent of each other,
where MAX will select the maximized value and MIN will
select the minimized value.

• The minimax algorithm performs a depth-first search
algorithm for the exploration of the complete game
tree.

• The minimax algorithm proceeds all the way down to the
terminal node of the tree, then backtrack the tree as the
recursion.

Pseudo-code for MinMax Algorithm

• function minimax(node, depth, maximizingPlayer) is

• if depth ==0 or node is a terminal node then

• return static evaluation of node

• if MaximizingPlayer then // for Maximizer Player

• maxEva= -infinity

• for each child of node do

• eva= minimax(child, depth-1, false)

• maxEva= max(maxEva,eva) //gives Maximum of the values

• return maxEva

• else // for Minimizer player

• minEva= +infinity

• for each child of node do

• eva= minimax(child, depth-1, true)

• minEva= min(minEva, eva) //gives minimum of the values

• return minEva

Initial Call

• Minimax(node, 3, true)

• Working of Min-Max Algorithm:
– The working of the minimax algorithm can be easily

described using an example. Below we have taken
an example of game-tree which is representing the
two-player game.

– In this example, there are two players one is called
Maximizer and other is called Minimizer.

– Maximizer will try to get the Maximum possible
score, and Minimizer will try to get the minimum
possible score.

Initial Call

– This algorithm applies DFS, so in this game-
tree, we have to go all the way through the
leaves to reach the terminal nodes.

– At the terminal node, the terminal values are
given so we will compare those value and
backtrack the tree until the initial state
occurs.

Step-I

• In the first step, the algorithm generates the
entire game-tree and apply the utility function
to get the utility values for the terminal states.
In the below tree diagram, let's take A is the
initial state of the tree. Suppose maximizer
takes first turn which has worst-case initial
value =- infinity, and minimizer will take next
turn which has worst-case initial value =
+infinity.

Step-I

Step-II

• Now, first we find the utilities value for the
Maximizer, its initial value is -∞, so we will compare
each value in terminal state with initial value of
Maximizer and determines the higher nodes values.
It will find the maximum among the all.

 For node D max(-1,- -∞) => max(-1,4)= 4

 For Node E max(2, -∞) => max(2, 6)= 6

 For Node F max(-3, -∞) => max(-3,-5) = -3

 For node G max(0, -∞) = max(0, 7) = 7

Step-II

Step-III

• In the next step, it's a turn for minimizer, so it
will compare all nodes value with +∞, and will
find the 3rd layer node values.

 For node B= min(4,6) = 4

 For node C= min (-3, 7) = -3

Step-III

Step-IV

• Now it's a turn for Maximizer, and it will again
choose the maximum of all nodes value and find
the maximum value for the root node. In this
game tree, there are only 4 layers, hence we
reach immediately to the root node, but in real
games, there will be more than 4 layers.

 For node A max(4, -3)= 4

Step-IV

That was the complete workflow of the
minimax two player game.

Properties of Mini-Max algorithm

• Complete- Min-Max algorithm is Complete. It will
definitely find a solution (if exist), in the finite search
tree.

• Optimal- Min-Max algorithm is optimal if both
opponents are playing optimally.

• Time complexity- As it performs DFS for the game-
tree, so the time complexity of Min-Max algorithm is
O(bm), where b is branching factor of the game-tree,
and m is the maximum depth of the tree.

• Space Complexity- Space complexity of Mini-max
algorithm is also similar to DFS which is O(bm).

Limitation of the minimax Algorithm

• The main drawback of the minimax algorithm is
that it gets really slow for complex games such
as Chess, go, etc.

• This type of games has a huge branching factor,
and the player has lots of choices to decide.

• This limitation of the minimax algorithm can be
improved from alpha-beta pruning

Inference in CSPs

• Path consistency
– Path consistency: A two-variable set {Xi, Xj} is

path-consistent with respect to a third
variable Xm if, for every assignment {Xi = a, Xj
= b} consistent with the constraint on {Xi, Xj},
there is an assignment to Xm that satisfies
the constraints on {Xi, Xm} and {Xm, Xj}.

– Path consistency tightens the binary
constraints by using implicit constraints that
are inferred by looking at triples of variables.

Inference in CSPs

• K-consistency
– K-consistency: A CSP is k-consistent if, for any set of k-1

variables and for any consistent assignment to those variables,
a consistent value can always be assigned to any kth variable.

– 1-consistency = node consistency; 2-consisency = arc
consistency; 3-consistensy = path consistency.

– A CSP is strongly k-consistent if it is k-consistent and is also (k -
1)-consistent, (k – 2)-consistent, … all the way down to 1-
consistent.

– A CSP with n nodes and make it strongly n-consistent, we are
guaranteed to find a solution in time O(n2d). But algorithm for
establishing n-consitentcy must take time exponential in n in
the worse case, also requires space that is exponential in n.

Inference in CSPs

• Global constraints
– A global constraint is one involving an

arbitrary number of variables (but not
necessarily all variables).

– Global constraints can be handled by special-
purpose algorithms that are more efficient
than general-purpose methods.

Global constraints

• 1) inconsistency detection for Alldiff constraints
– A simple algorithm: First remove any variable in the

constraint that has a singleton domain, and delete
that variable’s value from the domains of the
remaining variables. Repeat as long as there are
singleton variables. If at any point an empty domain is
produced or there are more vairables than domain
values left, then an inconsistency has been detected.

– A simple consistency procedure for a higher-order
constraint is sometimes more effective than applying
arc consistency to an equivalent set of binary
constrains.

Global constraints

• 2) inconsistency detection for resource constraint (the atmost
constraint)

• We can detect an inconsistency simply by checking the sum of the
minimum of the current domains;

• e.g. Atmost(10, P1, P2, P3, P4): no more than 10 personnel are
assigned in total.

• If each variable has the domain {3, 4, 5, 6}, the Atmost constraint
cannot be satisfied.

• We can enforce consistency by deleting the maximum value of
any domain if it is not consistent with the minimum values of the
other domains.

• e.g. If each variable in the example has the domain {2, 3, 4, 5, 6},
the values 5 and 6 can be deleted from each domain.

Global constraints

• 3) inconsistency detection for bounds consistent

• For large resource-limited problems with integer
values, domains are represented by upper and lower
bounds and are managed by bounds propagation.

• e.g. suppose there are two flights F1 and F2 in an
airline-scheduling problem, for which the planes
have capacities 165 and 385, respectively. The initial
domains for the numbers of passengers on each
flight are

• D1 = [0, 165] and D2 = [0, 385].

Global constraints

• Now suppose we have the additional constraint
that the two flight together must carry 420
people: F1 + F2 = 420. Propagating bounds
constraints, we reduce the domains to

D1 = [35, 165] and D2 = [255, 385].

• A CSP is bounds consistent if for every variable
X, and for both the lower-bound and upper-
bound values of X, there exists some value of Y
that satisfies the constraint between X and Y
for every variable Y.

Sudoku

• A Sudoku puzzle can be considered a CSP with
81 variables, one for each square. We use the
variable names A1 through A9 for the top row
(left to right), down to I1 through I9 for the
bottom row.

• The empty squares have the domain {1, 2, 3, 4,
5, 6, 7, 8, 9} and the pre-filled squares have a
domain consisting of a single value.

Sudoku

• There are 27 different Alldiff constraints: one for each row, column, and box of 9 squares:

•

• Alldiff(A1, A2, A3, A4, A5, A6, A7, A8, A9)

•

• Alldiff(B1, B2, B3, B4, B5, B6, B7, B8, B9)

•

• …

•

• Alldiff(A1, B1, C1, D1, E1, F1, G1, H1, I1)

•

• Alldiff(A2, B2, C2, D2, E2, F2, G2, H2, I2)

•

• …

•

• Alldiff(A1, A2, A3, B1, B2, B3, C1, C2, C3)

•

• Alldiff(A4, A5, A6, B4, B5, B6, C4, C5, C6)

•

• …

Backtracking search for CSPs

• Backtracking search, a form of depth-first search, is
commonly used for solving CSPs. Inference can be
interwoven with search.

• Commutativity: CSPs are all commutative. A problem
is commutative if the order of application of any
given set of actions has no effect on the outcome.

• Backtracking search: A depth-first search that
chooses values for one variable at a time and
backtracks when a variable has no legal values left
to assign.

Backtracking search for CSPs

• Backtracking algorithm repeatedly chooses an
unassigned variable, and then tries all values in the
domain of that variable in turn, trying to find a solution.
If an inconsistency is detected, then BACKTRACK returns
failure, causing the previous call to try another value.

• There is no need to supply BACKTRACKING-SEARCH
with a domain-specific initial state, action function,
transition model, or goal test.

• BACKTRACKING-SARCH keeps only a single
representation of a state and alters that representation
rather than creating a new ones.

Backtracking search for CSPs

Backtracking search for CSPs

• To solve CSPs efficiently without domain-specific
knowledge, address following questions:

• 1)function SELECT-UNASSIGNED-VARIABLE: which
variable should be assigned next?

• function ORDER-DOMAIN-VALUES: in what order
should its values be tried?

• 2)function INFERENCE: what inferences should be
performed at each step in the search?

• 3)When the search arrives at an assignment that
violates a constraint, can the search avoid repeating
this failure?

Intelligent backtracking

Local search for CSPs

• Local search algorithms for CSPs use a
complete-state formulation: the initial state
assigns a value to every variable, and the search
change the value of one variable at a time.

• The min-conflicts heuristic: In choosing a new
value for a variable, select the value that results
in the minimum number of conflicts with other
variables.

Local search for CSPs

Local search for CSPs

• The landscape of a CSP under the mini-conflicts
heuristic usually has a series of plateau. Simulated
annealing and Plateau search (i.e. allowing sideways
moves to another state with the same score) can
help local search find its way off the plateau.

• This wandering on the plateau can be directed with
tabu search: keeping a small list of recently visited
states and forbidding the algorithm to return to
those tates.

Local search for CSPs

• Constraint weighting: a technique that can help
concentrate the search on the important constraints.

• Each constraint is given a numeric weight Wi, initially all 1.

• At each step, the algorithm chooses a variable/value pair to
change that will result in the lowest total weight of all
violated constraints.

• The weights are then adjusted by incrementing the weight
of each constraint that is violated by the current
assignment.

• Local search can be used in an online setting when the
problem changes, this is particularly important in
scheduling problems.

Structure of Problem

The structure of constraint graph

• The structure of the problem as represented by the
constraint graph can be used to find solution quickly.

• e.g. The problem can be decomposed into 2 independent
subproblems: Coloring T and coloring the mainland.

• Tree: A constraint graph is a tree when any two varyiable
are connected by only one path.

• Directed arc consistency (DAC): A CSP is defined to be
directed arc-consistent under an ordering of variables X1,
X2, … , Xn if and only if every Xi is arc-consistent with each
Xj for j>i.

• By using DAC, any tree-structured CSP can be solved in time
linear in the number of variables.

The structure of constraint graph

• Pick any variable to be the root of the tree;

• Choose an ordering of the variable such that each variable
appears after its parent in the tree. (topological sort)

• Any tree with n nodes has n-1 arcs, so we can make this graph
directed arc-consistent in O(n) steps, each of which must
compare up to d possible domain values for 2 variables, for a
total time of O(nd2)

• Once we have a directed arc-consistent graph, we can just
march down the list of variables and choose any remaining
value.

• Since each link from a parent to its child is arc consistent, we
won’t have to backtrack, and can move linearly through the
variables.

The structure of constraint graph

The structure of constraint graph

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 7.0.1.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies MITUSkillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

