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Getting Started

• Dart is easy to learn if you know any of Java, C++, 
JavaScript, etc. 

• The simplest "Hello World" program gives the idea of 
the basic syntax of the programming language. It is the 
way of testing the system and working environment. 

• There are several ways to run the first program, which 
is given below:
– Using Command Line
– Running on Browser
– Using IDE



Hello World

void main() { 

   print("Hello World!"); 

}



Identifiers 

• Identifiers are the name which is used to define 
variables, methods, class, and function, etc. 

• An Identifier is a sequence of the letters([A to 
Z],[a to z]), digits([0-9]) and underscore(_), but 
remember that the first character should not be 
a numeric. 



Identifiers 

• The first character should not be a digit.

• Special characters are not allowed except underscore 
(_) or a dollar sign ($).

• Two successive underscores (__) are not allowed.

• The first character must be alphabet(uppercase or 
lowercase) or underscore.

• Identifiers must be unique and cannot contain 
whitespace.

• They are case sensitive. The variable name Tushar and 
tushar will be treated differently.



Printing and String Interpolation

• The print() function is used to print output on 
the console, and $expression is used for the 
string interpolation. Below is an example.
void main()  

{  

    var name = "Tushar";  

    var marks = 78.56;  

    print("My name is ${name} My marks are ${marks}");  

}  



Semicolon 

• The semicolon is used to terminate the statement 
that means, it indicates the statement is ended 
here. It is mandatory that each statement should be 
terminated with a semicolon(;). 

• We can write multiple statements in a single line by 
using a semicolon as a delimiter. The compiler will 
generate an error if it is not use properly.

• Example -

var msg1 = "Hello World!";  

var msg2 = "How are you?"  



Whitespace and Line Breaks

• The Dart compiler ignores whitespaces. It is used to 
specify space, tabs, and newline characters in our 
program. 

• It separates one part of any statement from 
another part of the statement. 

• We can also use space and tabs in our program to 
define indentation and provide the proper format 
for the program. 

• It makes code easy to understand and readable.



Block 

• The block is the collection of the statement 
enclosed in the curly braces. In Dart, we use curly 
braces to group all of the statements in the block. 

• Consider the following syntax.

• Syntax:

{ //start of the block   

    //block of statement(s)  

}// end of the block  



Comments 

• Comments are the set of statements that are 
ignored by the Dart compiler during the program 
execution. It is used to enhance the readability of 
the source code. 

• Generally, comments give a brief idea of code that 
what is happening in the code. 

• We can describe the working of variables, functions, 
classes, or any statement that exists in the code. 

• Programmers should use the comment for better 
practice. 



Comments 

• Dart provides three kinds of comments

– Single-line Comments

– Multi-line Comments

– Documentation Comments



Single-line Comment

• We can apply comments on a single line by using 
the // (double-slash). The single-line comments can 
be applied until a line break.

• Example -

void main(){  

    // This will print the given statement on screen  

    print("Welcome to MITU Skillologies");  

}  



Multi-line Comment

• Sometimes we need to apply comments on multiple lines; 
then, it can be done by using /*…..*/. The compiler 
ignores anything that written inside the /*…*/, but it 
cannot be nested with the multi-line comments. Let's see 
the following example.

• Example -

void main(){  

    /* This is the example of multi-line comment 

    This will print the given statement on screen */  

    print("Welcome to MITU Skillologies");  

} 



Documentation Comment

• The document comments are used to generate documentation or 
reference for a project/software package. It can be a single-line or 
multi-line comment that starts with /// or /*. We can use /// on 
consecutive lines, which is the same as the multiline comment. 

• These lines ignore by the Dart compiler expect those which are 
written inside the curly brackets. We can define classes, functions, 
parameters, and variables. Consider the following example.

• Syntax

///This  

///is   

///a example of  

/// multiline comment   



Keywords 



Data Types

• The data types are the most important fundamental 
features of programming language. 

• In Dart, the data type of the variable is defined by its 
value. 

• The variables are used to store values and reserve the 
memory location. 

• The data-type specifies what type of value will be 
stored by the variable. Each variable has its data-type. 

• The Dart is a static type of language, which means 
that the variables cannot modify.



Data Types

• Dart supports the following built-in Data types.
– Number
– Strings
– Boolean
– Lists
– Maps
– Runes
– Symbols



Numbers 

• The Darts Number is used to store the numeric values. The 
number can be two types - integer and double.

• Integer - Integer values represent the whole number or 
non-fractional values. An integer data type represents the 
64-bit non-decimal numbers between -263 to 263. A variable 
can store an unsigned or signed integer value. Ex.

int marks = 80;  

• Double - Double value represents the 64-bit of information 
(double-precision) for floating number or number with the 
large decimal points. The double keyword is used to declare 
the double type variable.

double pi = 3.14;  



Strings 

• A string is the sequence of the character. If we 
store the data like - name, address, special 
character, etc. 

• It is signified by using either single quotes or 
double quotes. A Dart string is a sequence of 
UTF-16 code units.

var msg = "Welcome to MITU";

print("सुस्वागतम");   



Boolean 

• The Boolean type represents the two values - 
true and false. 

• The bool keyword uses to denote Boolean Type. 

• The numeric values 1 and 0 cannot be used to 
represent the true or false value.

• bool isValid = true;   



List 

• The list is a collection of the ordered objects 
(value). 

• The concept of list is similar to an array. An 
array is defined as a collection of the multiple 
elements in a single variable. 

• The elements in the list are separated by the 
comma enclosed in the square bracket[]. 

• The sample list is given below.

var list = [1,2,3]  



Map 

• The maps type is used to store values in key-value 
pairs. Each key is associated with its value. 

• The key and value can be any type. In Map, the key 
must be unique, but a value can occur multiple 
times. 

• The Map is defined by using curly braces ({}), and 
comma separates each pair.

var student = {'name': 'Rajesh',  'age':22, 'Branch': 
'Statistics'}  



Runes  

• As we know that, the strings are the sequence of Unicode 
UTF-16 code units. Unicode is a technique which is used to 
describe a unique numeric value for each digit, letter, and 
symbol. 

• Since Dart Runes are the special string of Unicode UTF-32 
units. It is used to represent the special syntax.

• For example - The special heart character  is equivalent ♥
to Unicode code \u2665, where \u means Unicode, and the 
numbers are hexadecimal integer. 

• If the hex value is less or greater than 4 digits, it places in a 
curly bracket ({}). For example - An emoji  is represented 😀
as \u{1f600}.



Example 

void main( ){  

    var heart_symbol = '\u2665';  

    var laugh_symbol = '\u{1f600}';  

    print(heart_symbol);  

    print(laugh_symbol);  

}  



Symbol 

• The Dart Symbols are the objects which are 
used to refer an operator or identifier that 
declare in a Dart program. 

• It is commonly used in APIs that refers to 
identifiers by name because an identifier name 
can changes but not identifier symbols.



Dynamic Type

• Dart is an optionally typed language. 

• If the variable type is not specified explicitly, then 
the variable type is dynamic. The dynamic keyword 
is used for type annotation explicitly.



Variable Default Value

• While declaring the variable without initializing 
the value then the Dart compiler provides 
default value (Null) to the variable. 

• Even the numeric type variables are initially 
assigned with the null value. 

• Let's consider the following example.

int count;  



Final and const

• When we do not want to change a variable in the future 
then we use final and const. It can be used in place of var 
or in addition to a type. 

• A final variable can be set only one time where the 
variable is a compile-time constant. The example of 
creating a final variable is given below.

• Example -

final name = 'Rashmi';  

// final variable without type annotation.  

final String msg = 'Hi?';     

// final variable with type annotation.  



Final and const

• The const is used to create compile-time constants. 
We can declare a value to compile-time constant such 
as number, string literal, a const variable, etc.

const a = 1000;  

• The const keyword is also used to create a constant 
value that cannot be changed after its creation.

var f = const[];  

• If we try to change it, then it will throw an error.

f = [12];    //Error, The const variable cannot be change  



Operators 



Arithmetic Operators 

• +

• -

• *

• /

• %

• Unary – 



Arithmetic Operators 

void main(){  

  print("Example of Assignment operators");  

  var n1 = 10;  

  var n2 = 5;  

    

  print("n1+n2 = ${n1+n2}");  

  print("n1-n2 = ${n1-n2}");  

  print("n1*n2 = ${n1*n2}");  

  print("n1/n2 = ${n1/n2}");   

  print("n1%n2 = ${n1%n2}");     

}  



Increment and Decrement

• ++ and -- operators are known as increment and 
decrement operators and also known as unary 
operators, respectively. 

• Unary operators, operate on single operand where ++ 
adds 1 to operands and -- subtract 1 to operand 
respectively.

• The unary operators can be used in two ways - postfix 
and prefix. 

• If ++ is used as a postfix(like x++), it returns the value 
of operand first then increments the value of x. If -- is 
used as a prefix(like ++x), it increases the value of x.



Assignment Operators 

• =

• +=

• -=

• *=

• ~/=

• %=



Relational Operators 

• ==

• !=

• <

• >

• <=

• >=



Bitwise Operators 

• AND &

• OR |

• EX-OR ^

• >>

• <<

• ~



Type Test Operators 

• as
– It is used for typecast.

• is
– It returns TRUE if the object has specified 

type.

• is!
– It returns TRUE if the object has not specified 

type.



Type Test Operators 

void main()  

{  

  var num = 10;  

  var name = "Skillologies";  

  print(num is int);    

  print(name is! String );  

}  



Logical Operators 

• &&

• ||

• !



Conditional Operators 

• The Conditional Operator is same as if-else 
statement and provides similar functionality as 
conditional statement. 

• It is the second form of if-else statement. It is also 
identified as "Ternary Operator". The syntax is 
given below.

• Syntax 1 -

condition ? exp1 : exp2  

If the given condition is TRUE then it returns exp1 
otherwise exp2.



Conditional Operators 

• Syntax 2 -

exp1 ?? expr2  

If the exp1 is not-null, returns its value, 
otherwise returns the exp2's value.



Conditional Operators 

void main() {   

   var x = null;   

   var y = 20;   

   var val = x ?? y;   

   print(val);   

}  



Conditional Operators 

void main() {   

   var a = 30;   

   var output = a > 38 ? "value greater than 10":"value lesser 
than equal to 30";   

   print(output);   

}  



• The parse() function converts the numeric string to the 
number. Consider the following example -

void main(){  

var a = num.parse("20.56");  

var b = num.parse("15.63");    

var c = a+b;   

print("The sum is = ${c}");  

}  

The parse()



The number properties



The number methods



Strings 

• String is a sequence of the character or UTF-16 code 
units. It is used to store the text value. The string can be 
created using single quotes or double-quotes. 

• The multiline string can be created using the triple-
quotes. Strings are immutable; it means you cannot 
modify it after creation.

• In Dart, The String keyword can be used to declare the 
string.



Strings 

• String msg = 'Welcome to MITU';  

or  

• String msg1 = "This is double-quoted string example.";  

or  

• String msg2 = ' ' ' line1  

line2  

line3'''  



Strings 

• The + or += operator is used to merge the two string. 

• String Interpolation

– The string interpolation is a technique to manipulate 
the string and create the new string by adding 
another value. 

– It can be used to evaluate the string including 
placeholders, variables, and interpolated expression. 

– The ${expression} is used for string interpolation. 
The expressions are replaced with their 
corresponding values. 



Strings 

• Properties and Methods



Useful web resources

• www.mitu.co.in 

• www.pythonprogramminglanguage.com

• www.scikit-learn.org  

• www.towardsdatascience.com

• www.medium.com

• www.analyticsvidhya.com

• www.kaggle.com

• www.stephacking.com

• www.github.com 

http://www.mitu.co.in/
http://www.pythonprogramminglanguage.com/
http://www.scikit-learn.org/
http://www.towardsdatascience.com/
http://www.medium.com/
http://www.analyticsvidhya.com/
http://www.kaggle.com/
http://www.stephacking.com/
http://www.github.com/


tushar@tusharkute.com

      Thank you
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Web Resources
https://mitu.co.in 

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies MITUSkillologies
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