
Dart – Basics and Data Types

Tushar B. Kute,
http://tusharkute.com

Getting Started

• Dart is easy to learn if you know any of Java, C++,
JavaScript, etc.

• The simplest "Hello World" program gives the idea of
the basic syntax of the programming language. It is the
way of testing the system and working environment.

• There are several ways to run the first program, which
is given below:
– Using Command Line
– Running on Browser
– Using IDE

Hello World

void main() {

 print("Hello World!");

}

Identifiers

• Identifiers are the name which is used to define
variables, methods, class, and function, etc.

• An Identifier is a sequence of the letters([A to
Z],[a to z]), digits([0-9]) and underscore(_), but
remember that the first character should not be
a numeric.

Identifiers

• The first character should not be a digit.

• Special characters are not allowed except underscore
(_) or a dollar sign ($).

• Two successive underscores (__) are not allowed.

• The first character must be alphabet(uppercase or
lowercase) or underscore.

• Identifiers must be unique and cannot contain
whitespace.

• They are case sensitive. The variable name Tushar and
tushar will be treated differently.

Printing and String Interpolation

• The print() function is used to print output on
the console, and $expression is used for the
string interpolation. Below is an example.
void main()

{

 var name = "Tushar";

 var marks = 78.56;

 print("My name is ${name} My marks are ${marks}");

}

Semicolon

• The semicolon is used to terminate the statement
that means, it indicates the statement is ended
here. It is mandatory that each statement should be
terminated with a semicolon(;).

• We can write multiple statements in a single line by
using a semicolon as a delimiter. The compiler will
generate an error if it is not use properly.

• Example -

var msg1 = "Hello World!";

var msg2 = "How are you?"

Whitespace and Line Breaks

• The Dart compiler ignores whitespaces. It is used to
specify space, tabs, and newline characters in our
program.

• It separates one part of any statement from
another part of the statement.

• We can also use space and tabs in our program to
define indentation and provide the proper format
for the program.

• It makes code easy to understand and readable.

Block

• The block is the collection of the statement
enclosed in the curly braces. In Dart, we use curly
braces to group all of the statements in the block.

• Consider the following syntax.

• Syntax:

{ //start of the block

 //block of statement(s)

}// end of the block

Comments

• Comments are the set of statements that are
ignored by the Dart compiler during the program
execution. It is used to enhance the readability of
the source code.

• Generally, comments give a brief idea of code that
what is happening in the code.

• We can describe the working of variables, functions,
classes, or any statement that exists in the code.

• Programmers should use the comment for better
practice.

Comments

• Dart provides three kinds of comments

– Single-line Comments

– Multi-line Comments

– Documentation Comments

Single-line Comment

• We can apply comments on a single line by using
the // (double-slash). The single-line comments can
be applied until a line break.

• Example -

void main(){

 // This will print the given statement on screen

 print("Welcome to MITU Skillologies");

}

Multi-line Comment

• Sometimes we need to apply comments on multiple lines;
then, it can be done by using /*…..*/. The compiler
ignores anything that written inside the /*…*/, but it
cannot be nested with the multi-line comments. Let's see
the following example.

• Example -

void main(){

 /* This is the example of multi-line comment

 This will print the given statement on screen */

 print("Welcome to MITU Skillologies");

}

Documentation Comment

• The document comments are used to generate documentation or
reference for a project/software package. It can be a single-line or
multi-line comment that starts with /// or /*. We can use /// on
consecutive lines, which is the same as the multiline comment.

• These lines ignore by the Dart compiler expect those which are
written inside the curly brackets. We can define classes, functions,
parameters, and variables. Consider the following example.

• Syntax

///This

///is

///a example of

/// multiline comment

Keywords

Data Types

• The data types are the most important fundamental
features of programming language.

• In Dart, the data type of the variable is defined by its
value.

• The variables are used to store values and reserve the
memory location.

• The data-type specifies what type of value will be
stored by the variable. Each variable has its data-type.

• The Dart is a static type of language, which means
that the variables cannot modify.

Data Types

• Dart supports the following built-in Data types.
– Number
– Strings
– Boolean
– Lists
– Maps
– Runes
– Symbols

Numbers

• The Darts Number is used to store the numeric values. The
number can be two types - integer and double.

• Integer - Integer values represent the whole number or
non-fractional values. An integer data type represents the
64-bit non-decimal numbers between -263 to 263. A variable
can store an unsigned or signed integer value. Ex.

int marks = 80;

• Double - Double value represents the 64-bit of information
(double-precision) for floating number or number with the
large decimal points. The double keyword is used to declare
the double type variable.

double pi = 3.14;

Strings

• A string is the sequence of the character. If we
store the data like - name, address, special
character, etc.

• It is signified by using either single quotes or
double quotes. A Dart string is a sequence of
UTF-16 code units.

var msg = "Welcome to MITU";

print("सुस्वागतम");

Boolean

• The Boolean type represents the two values -
true and false.

• The bool keyword uses to denote Boolean Type.

• The numeric values 1 and 0 cannot be used to
represent the true or false value.

• bool isValid = true;

List

• The list is a collection of the ordered objects
(value).

• The concept of list is similar to an array. An
array is defined as a collection of the multiple
elements in a single variable.

• The elements in the list are separated by the
comma enclosed in the square bracket[].

• The sample list is given below.

var list = [1,2,3]

Map

• The maps type is used to store values in key-value
pairs. Each key is associated with its value.

• The key and value can be any type. In Map, the key
must be unique, but a value can occur multiple
times.

• The Map is defined by using curly braces ({}), and
comma separates each pair.

var student = {'name': 'Rajesh', 'age':22, 'Branch':
'Statistics'}

Runes

• As we know that, the strings are the sequence of Unicode
UTF-16 code units. Unicode is a technique which is used to
describe a unique numeric value for each digit, letter, and
symbol.

• Since Dart Runes are the special string of Unicode UTF-32
units. It is used to represent the special syntax.

• For example - The special heart character is equivalent ♥
to Unicode code \u2665, where \u means Unicode, and the
numbers are hexadecimal integer.

• If the hex value is less or greater than 4 digits, it places in a
curly bracket ({}). For example - An emoji is represented 😀
as \u{1f600}.

Example

void main(){

 var heart_symbol = '\u2665';

 var laugh_symbol = '\u{1f600}';

 print(heart_symbol);

 print(laugh_symbol);

}

Symbol

• The Dart Symbols are the objects which are
used to refer an operator or identifier that
declare in a Dart program.

• It is commonly used in APIs that refers to
identifiers by name because an identifier name
can changes but not identifier symbols.

Dynamic Type

• Dart is an optionally typed language.

• If the variable type is not specified explicitly, then
the variable type is dynamic. The dynamic keyword
is used for type annotation explicitly.

Variable Default Value

• While declaring the variable without initializing
the value then the Dart compiler provides
default value (Null) to the variable.

• Even the numeric type variables are initially
assigned with the null value.

• Let's consider the following example.

int count;

Final and const

• When we do not want to change a variable in the future
then we use final and const. It can be used in place of var
or in addition to a type.

• A final variable can be set only one time where the
variable is a compile-time constant. The example of
creating a final variable is given below.

• Example -

final name = 'Rashmi';

// final variable without type annotation.

final String msg = 'Hi?';

// final variable with type annotation.

Final and const

• The const is used to create compile-time constants.
We can declare a value to compile-time constant such
as number, string literal, a const variable, etc.

const a = 1000;

• The const keyword is also used to create a constant
value that cannot be changed after its creation.

var f = const[];

• If we try to change it, then it will throw an error.

f = [12]; //Error, The const variable cannot be change

Operators

Arithmetic Operators

• +

• -

• *

• /

• %

• Unary –

Arithmetic Operators

void main(){

 print("Example of Assignment operators");

 var n1 = 10;

 var n2 = 5;

 print("n1+n2 = ${n1+n2}");

 print("n1-n2 = ${n1-n2}");

 print("n1*n2 = ${n1*n2}");

 print("n1/n2 = ${n1/n2}");

 print("n1%n2 = ${n1%n2}");

}

Increment and Decrement

• ++ and -- operators are known as increment and
decrement operators and also known as unary
operators, respectively.

• Unary operators, operate on single operand where ++
adds 1 to operands and -- subtract 1 to operand
respectively.

• The unary operators can be used in two ways - postfix
and prefix.

• If ++ is used as a postfix(like x++), it returns the value
of operand first then increments the value of x. If -- is
used as a prefix(like ++x), it increases the value of x.

Assignment Operators

• =

• +=

• -=

• *=

• ~/=

• %=

Relational Operators

• ==

• !=

• <

• >

• <=

• >=

Bitwise Operators

• AND &

• OR |

• EX-OR ^

• >>

• <<

• ~

Type Test Operators

• as
– It is used for typecast.

• is
– It returns TRUE if the object has specified

type.

• is!
– It returns TRUE if the object has not specified

type.

Type Test Operators

void main()

{

 var num = 10;

 var name = "Skillologies";

 print(num is int);

 print(name is! String);

}

Logical Operators

• &&

• ||

• !

Conditional Operators

• The Conditional Operator is same as if-else
statement and provides similar functionality as
conditional statement.

• It is the second form of if-else statement. It is also
identified as "Ternary Operator". The syntax is
given below.

• Syntax 1 -

condition ? exp1 : exp2

If the given condition is TRUE then it returns exp1
otherwise exp2.

Conditional Operators

• Syntax 2 -

exp1 ?? expr2

If the exp1 is not-null, returns its value,
otherwise returns the exp2's value.

Conditional Operators

void main() {

 var x = null;

 var y = 20;

 var val = x ?? y;

 print(val);

}

Conditional Operators

void main() {

 var a = 30;

 var output = a > 38 ? "value greater than 10":"value lesser
than equal to 30";

 print(output);

}

• The parse() function converts the numeric string to the
number. Consider the following example -

void main(){

var a = num.parse("20.56");

var b = num.parse("15.63");

var c = a+b;

print("The sum is = ${c}");

}

The parse()

The number properties

The number methods

Strings

• String is a sequence of the character or UTF-16 code
units. It is used to store the text value. The string can be
created using single quotes or double-quotes.

• The multiline string can be created using the triple-
quotes. Strings are immutable; it means you cannot
modify it after creation.

• In Dart, The String keyword can be used to declare the
string.

Strings

• String msg = 'Welcome to MITU';

or

• String msg1 = "This is double-quoted string example.";

or

• String msg2 = ' ' ' line1

line2

line3'''

Strings

• The + or += operator is used to merge the two string.

• String Interpolation

– The string interpolation is a technique to manipulate
the string and create the new string by adding
another value.

– It can be used to evaluate the string including
placeholders, variables, and interpolated expression.

– The ${expression} is used for string interpolation.
The expressions are replaced with their
corresponding values.

Strings

• Properties and Methods

Useful web resources

• www.mitu.co.in

• www.pythonprogramminglanguage.com

• www.scikit-learn.org

• www.towardsdatascience.com

• www.medium.com

• www.analyticsvidhya.com

• www.kaggle.com

• www.stephacking.com

• www.github.com

http://www.mitu.co.in/
http://www.pythonprogramminglanguage.com/
http://www.scikit-learn.org/
http://www.towardsdatascience.com/
http://www.medium.com/
http://www.analyticsvidhya.com/
http://www.kaggle.com/
http://www.stephacking.com/
http://www.github.com/

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 5.1.6.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies MITUSkillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

