
Dart – Object Oriented Programming

Tushar B. Kute,
http://tusharkute.com

Programming Languages

Computer Languages

Imperative Declarative

Procedural
e.g. C

Object Based
e.g. ADA

Object Oriented
e.g. C++, JAVA

Block Structured
e.g. PASCAL

Logical
e.g. PROLOG

Functional
e.g. LISP

Database
e.g. SQL

Procedure Oriented Programming

Main Program

Function
A

Function
B

Function
C

Function
D

Function
E

Function
F

Object Oriented Programming

Function
Function

Function
Function

Shared
Data

Object

What is Object Oriented Programming?

• Object-oriented Programming, or OOP for short,
is a programming paradigm which provides a
means of structuring programs so that properties
and behaviors are bundled into individual objects.

• For instance, an object could represent a person
with a name property, age, address, etc., with
behaviors like walking, talking, breathing, and
running. Or an email with properties like recipient
list, subject, body, etc., and behaviors like adding
attachments and sending.

What is Object Oriented Programming?

• Put another way, object-oriented programming
is an approach for modeling concrete, real-
world things like cars as well as relations
between things like companies and employees,
students and teachers, etc.

• OOP models real-world entities as software
objects, which have some data associated with
them and can perform certain functions.

Class

Classes are used to create new user-defined data
structures that contain arbitrary information about
something. In the case of an car, we could create an Car()
class to track properties about the Car like the fuel and
maxspeed.

Objects

• While the class is the blueprint, an instance is a copy
of the class with actual values, literally an object
belonging to a specific class.

• Put another way, a class is like a form or
questionnaire.

• It defines the needed information. After you fill out
the form, your specific copy is an instance of the
class; it contains actual information relevant to you.

Objects

OOP Features

• Reduction in the complexity

• Importance of data

• Creation of new data structure

• Data Hiding

• Characterization of the objects

• Communication among objects

• Extensibility

• Bottom-up programming approach

OOP Concepts

• Class

• Object

• Data Hiding / abstraction / encapsulation

• Inheritance

• Polymorphism

• Dynamic Binding

Creating a class

class ClassName {

 <fields>

 <getter/setter>

 <constructor>

 <functions>

}

Constructor

• A constructor is a different type of function which
is created with same name as its class name.

• The constructor is used to initialize an object
when it is created. When we create the object of
class, then constructor is automatically called.

• It is quite similar to class function but it has no
explicit return type.

• The generative constructor is the most general
form of the constructor, which is used to create a
new instance of a class.

Constructor No Agruments

• A Constructor which has no parameter is called
default constructor or no-arg constructor. It is
automatically created (with no argument) by

• Dart compiler if we don't declare in the class.
The Dart compiler ignores the default
constructor if we create a constructor with
argument or no argument.

Constructor Parameters

• We can also pass the parameters to a
constructor that type of constructor is called
parameterized constructor.

• It is used to initialize instance variables.
Sometimes, we need a constructor which
accepts single or multiple parameters.

• The parameterized constructors are mainly used
to initialize instance variable with own values.

Constructor Named

• The named constructors are used to declare the
multiple constructors in single class. The syntax
is given below.

• Syntax:

className.constructor_name(param_list)

this

• The this keyword is used to refer the current class object.
It indicates the current instance of the class, methods, or
constructor.

• It can be also used to call the current class methods or
constructors. It eliminates the uncertainty between class
attributes and the parameter names are the same.

• If we declare the class attributes same as the parameter
name, that situation will create ambiguity in the program,
then the this keyword can remove the ambiguity by
prefixing the class attributes.

• It can be passed as an argument in the class method or
constructors.

Constructor

void main() {

 // Creating an object

 Student std = new Student("Alisha",26);

}

class Student{

 // Declaring a construstor

 Student(String str, int age){

 print("The name is: ${str}");

 print("The age is: ${age}");

 }

}

Function - why?

• It increases the module approach to solve the
problems.

• It enhances the re-usability of the program.

• We can do the coupling of the programs.

• It optimizes the code.

• It makes debugging easier.

• It makes development easy and creates less
complexity.

Function - Definition

• A function can be defined by providing the name of the
function with the appropriate parameter and return
type. A function contains a set of statements which are
called function body. The syntax is given below.

• Syntax:

return_type func_name (parameter_list):

{

 //statement(s)

 return value;

}

Function - Example

int mul(int a, int b){

 int c;

 c = a+b;

 print("The sum is:${c}");

}

Function - Parameters

• When a function is called, it may have some information as per
the function prototype is known as a parameter (argument).

• The number of parameters passed and data type while the
function call must be matched with the number of parameters
during function declaration. Otherwise, it will throw an error.

• Parameter passing is also optional, which means it is not
compulsory to pass during function declaration. The parameter
can be two types.

• Actual Parameter - A parameter which is passed during a
function definition is called the actual parameter.

• Formal Parameter - A parameter which is passed during a
function call is called the formal parameter.

Function - Parameters

• When a function is called, it may have some information as per
the function prototype is known as a parameter (argument).

• The number of parameters passed and data type while the
function call must be matched with the number of parameters
during function declaration. Otherwise, it will throw an error.

• Parameter passing is also optional, which means it is not
compulsory to pass during function declaration. The parameter
can be two types.

• Actual Parameter - A parameter which is passed during a
function definition is called the actual parameter.

• Formal Parameter - A parameter which is passed during a
function call is called the formal parameter.

Function - Parameters

• A function always returns some value as a result
to the point where it is called. The return
keyword is used to return a value.

• The return statement is optional. A function can
have only one return statement. The syntax is
given below.

Function - Anonymous

• Dart also provides the facility to specify a nameless
function or function without a name. This type of
function is known as an anonymous function,
lambda, or closure.

• An anonymous function behaves the same as a
regular function, but it does not have a name with it.
It can have zero or any number of arguments with an
optional type annotation.

• We can assign the anonymous function to a variable,
and then we can retrieve or access the value of the
closure based on our requirement.

Function - Anonymous

• An Anonymous function contains an
independent block of the code, and that can be
passed around in our code as function
parameters. The syntax is as follows.

Syntax:

(parameter_list) {

 statement(s)

}

Function - Anonymous

void main() {

 var list = ["Ram","Raj","Rani","Ritu"];

 print("Example of anonymous function");

 list.forEach((item) {

 print('${list.indexOf(item)}: $item');

});

}

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 5.1.6.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies MITUSkillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

