
A*Algorithm

Tushar B. Kute,
http://tusharkute.com

A* Algorithm

• Search algorithms are algorithms designed to
search for or retrieve elements from a data
structure, where they are stored.

• They are essential to access desired elements in
a data structure and retrieve them when a need
arises.

• A vital aspect of search algorithms is Path
Finding, which is used to find paths that can be
taken to traverse from one point to another, by
finding the most optimum route.

A* Algorithm

• It is a searching algorithm that is used to find the
shortest path between an initial and a final point.

• It is a handy algorithm that is often used for map
traversal to find the shortest path to be taken.

• A* was initially designed as a graph traversal
problem, to help build a robot that can find its own
course.

• It still remains a widely popular algorithm for
graph traversal.

A* Algorithm

• It searches for shorter paths first, thus making it an
optimal and complete algorithm.

• An optimal algorithm will find the least cost outcome for a
problem, while a complete algorithm finds all the possible
outcomes of a problem.

• Another aspect that makes A* so powerful is the use of
weighted graphs in its implementation. A weighted graph
uses numbers to represent the cost of taking each path or
course of action.

• This means that the algorithms can take the path with the
least cost, and find the best route in terms of distance and
time.

A* Algorithm

A* Algorithm

• A major drawback of the algorithm is its space
and time complexity.

• It takes a large amount of space to store all
possible paths and a lot of time to find them.

A* Algorithm: Basics

• A heuristic algorithm sacrifices optimality, with
precision and accuracy for speed, to solve
problems faster and more efficiently.

• All graphs have different nodes or points which
the algorithm has to take, to reach the final node.

• The paths between these nodes all have a
numerical value, which is considered as the
weight of the path.

• The total of all paths transverse gives you the
cost of that route.

A* Algorithm: Basics

• Initially, the Algorithm calculates the cost to all its
immediate neighboring nodes,n, and chooses the one
incurring the least cost.

• This process repeats until no new nodes can be chosen and
all paths have been traversed. Then, you should consider
the best path among them. If f(n) represents the final cost,
then it can be denoted as :

f(n) = g(n) + h(n), where :

• g(n) = cost of traversing from one node to another. This will
vary from node to node

• h(n) = heuristic approximation of the node's value. This is
not a real value but an approximation cost

A* Algorithm: How it works?

• Consider the weighted graph depicted above,
which contains nodes and the distance between
them. Let's say you start from A and have to go
to D.

A* Algorithm: How it works?

• Now, since the start is at the source A, which
will have some initial heuristic value. Hence, the
results are

f(A) = g(A) + h(A)

f(A) = 0 + 6 = 6

• Next, take the path to other neighbouring
vertices :

f(A-B) = 1 + 4

f(A-C) = 5 + 2

A* Algorithm: How it works?

• Now take the path to the destination from these
nodes, and calculate the weights :

f(A-B-D) = (1+ 7) + 0

f(A-C-D) = (5 + 10) + 0

• It is clear that node B gives you the best path, so
that is the node you need to take to reach the
destination.

A* Algorithm: Pseudocode

• The text below represents the pseudocode of the
Algorithm. It can be used to implement the algorithm
in any programming language and is the basic logic
behind the Algorithm.
–Make an open list containing starting node
• If it reaches the destination node :
• Make a closed empty list
• If it does not reach the destination node, then

consider a node with the lowest f-score in the
open list

–We are finished

A* Algorithm: Pseudocode

– Else :
• Put the current node in the list and check its neighbors

• For each neighbor of the current node :
– If the neighbor has a lower g value than the current node

and is in the closed list:

• Replace neighbor with this new node as the neighbor’s parent
– Else If (current g is lower and neighbor is in the open list):

• Replace neighbor with the lower g value and change the
neighbor’s parent to the current node.
– Else If the neighbor is not in both lists:

• Add it to the open list and set its g

Properties

• Advantages of A* search algorithm
– This algorithm is best when compared with

other algorithms.
– This algorithm can be used to solve very

complex problems also it is an optimal one.

• Disadvantages of A* search algorithm
– The A* search is based on heuristics and cost. It

may not produce the shortest path.
– The usage of memory is more as it keeps all the

nodes in the memory.

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 7.0.1.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies MITUSkillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

