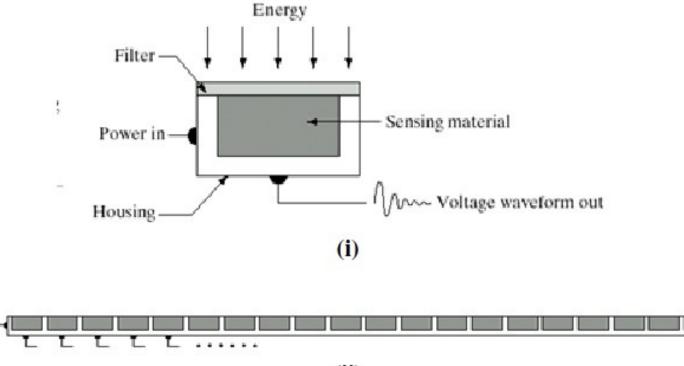
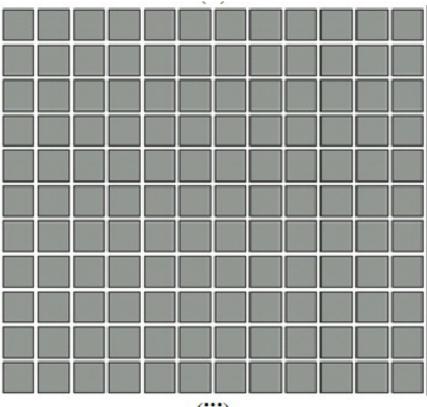


Tushar B. Kute, http://tusharkute.com

- Images can be generated by the combination of an illuminating source and reflection or absorption of energy from that source by the elements of the scene being imaged.
- The illuminating source could be sun or any other source of electromagnetic energy such as radar, IR rays or X-ray energy.
- Depending upon the nature of source, illumination energy is reflected from or transmitted through object.
- This reflected or transmitted energy is focused onto a photo converter which converts the energy into visible light.



- There are 3 principal sensor arrangements (produce an electrical output proportional to light intensity).
 - (i)Single imaging Sensor
 - (ii)Line sensor
 - (iii)Array sensor



(ii)

(iii)

Image Acquisition using a single sensor

- The most common sensor of this type is the photodiode, which is constructed of silicon materials and whose output voltage waveform is proportional to light.
- The use of a filter in front of a sensor improves selectivity. For example, a green (pass) filter in front of a light sensor favours light in the green band of the color spectrum.
- As a consequence, the sensor output will be stronger for green light than for other components in the visible spectrum.

Image Acquisition using a single sensor

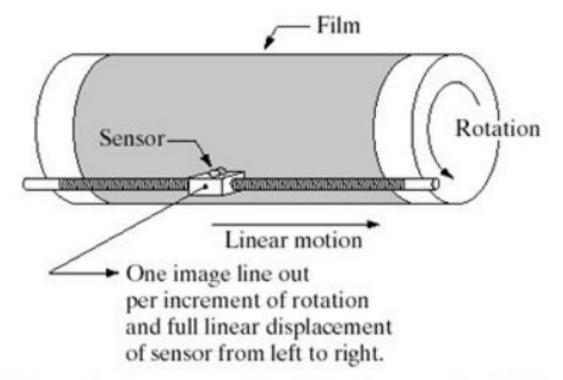


Fig: Combining a single sensor with motion to generate a 2-D image

Image Acquisition using a single sensor

- In order to generate a 2-D image using a single sensor, there have to be relative displacements in both the xand y-directions between the sensor and the area to be imaged.
- An arrangement used in high precision scanning, where a film negative is mounted onto a drum whose mechanical rotation provides displacement in one dimension.
- The single sensor is mounted on a lead screw that provides motion in the perpendicular direction. Since mechanical motion can be controlled with high precision, this method is an inexpensive (but slow) way to obtain high-resolution images.

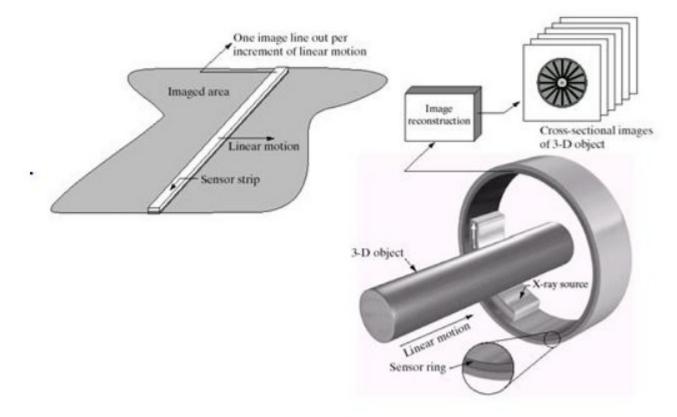


Fig: (a) Image acquisition using linear sensor strip (b) Image acquisition using circular sensor strip.

- The strip provides imaging elements in one direction. Motion perpendicular to the strip provides imaging in the other direction.
- This is the type of arrangement used in most flatbed scanners.
- Sensing devices with 4000 or more in-line sensors are possible. In-line sensors are used routinely in airborne imaging applications, in which the imaging system is mounted on an aircraft that flies at a constant altitude and speed over the geographical area to be imaged.

- One-dimensional imaging sensor strips that respond to various bands of the electromagnetic spectrum are mounted perpendicular to the direction of flight.
- The imaging strip gives one line of an image at a time, and the motion of the strip completes the other dimension of a two-dimensional image.
- Sensor strips mounted in a ring configuration are used in medical and industrial imaging to obtain cross-sectional ("slice") images of 3-D objects.

- A rotating X-ray source provides illumination and the portion of the sensors opposite the source collect the X-ray energy that pass through the object (the sensors obviously have to be sensitive to X-ray energy).
- This is the basis for medical and industrial computerized axial tomography (CAT) imaging.

Image Acquisition using Sensor Array

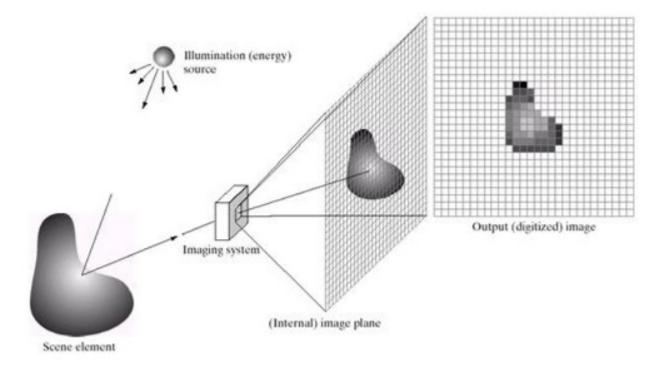


Fig: An example of the digital image acquisition process (a) energy source (b) An element of a scene (d) Projection of the scene into the image (e) digitized image

Image Acquisition using Sensor Array

- This type of arrangement is found in digital cameras. A typical sensor for these cameras is a CCD array, which can be manufactured with a broad range of sensing properties and can be packaged in rugged arrays of 4000 * 4000 elements or more.
- CCD sensors are used widely in digital cameras and other light sensing instruments.
- The response of each sensor is proportional to the integral of the light energy projected onto the surface of the sensor, a property that is used in astronomical and other applications requiring low noise images.

- The first function performed by the imaging system is to collect the incoming energy and focus it onto an image plane.
- If the illumination is light, the front end of the imaging system is a lens, which projects the viewed scene onto the lens focal plane.
- The sensor array, which is coincident with the focal plane, produces outputs proportional to the integral of the light received at each sensor.

Simple Image formation model

- Where the value of the amplitude f at the spatial coordinates x,y is a positive scalar quantity whose value is determined by the source of light.
- Thus 0<f(x,y)< α
- This function f(x,y) is characterized by two components.
- (1) The amount of source illumination incident on the scene i(x,y) and (2) amount of reflectance component r(x,y).
- Therefore f(x,y)= i(x,y).r(x,y) where
 - $0 \le (x,y) \le \alpha$ and
 - 0 < i(x,y) < a
 - 0< r(x,y) < 1

reflectivity depends on the characteristics of the image.

Simple Image formation model

- When the illuminating object is normal visible light, reflectivity function becomes the main factor for image formation.
- When the image is formed of a chest through X-ray instead of reflectivity light transmitivity function helps in formation of images

Thank you

This presentation is created using LibreOffice Impress 7.0.1.2, can be used freely as per GNU General Public License

Web Resources https://mitu.co.in http://tusharkute.com

contact@mitu.co.in
tushar@tusharkute.com