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First Assignment

= Wells paper handout for question 1

= Question 2 more open ended

— Less accurate approximations
e Simple box filtering doesn’t work

— Anisotropic, spatially dependent

spatial kemel [ mfluence g in the mtensity weight £« g
domain for the central pixel for the central pixel
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Ilmage Warping

= Image filtering: change range of image
g(x) = T*1(x)

—»T—»

* Image warping: change domain of image

g(x) = 1(T(x))
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Feature Detection In Images

= Filtering to provide area of support
— Gaussian, bilateral, ...

= Measures of local image difference
— Edges, corners

= More sophisticated features are invariant
to certain transformations or warps of the
Image
— E.g., as occur when viewing direction changes
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Parametric (Global) Warping

= Examples of parametric warps:

projective

affine cylindrical
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Parametric (Global) Warping

& ; s ‘%’* \ = - ¢
gu S i = e 5

P’ = T(pP)
= What does it mean that T is global?

— Same function for any point p
— Described by a few parameters, often matrix

p’ = M*p - M
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Scaling

= Scaling a coordinate means multiplying each of
Its components (axes) by a scalar

= Uniform scaling means this scalar is the same for
all components:

X 2
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Scaling

= Non-uniform scaling: different scalars per
component:

X x 2, =
Y x0.5
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Scaling

= Scaling operation: X'= ax

y'= by
= Or, in matrix form: [y [a o x"
Yy - 0 bjy
—

scaling matrix S

What's inverse of S?

%f;né)? Cornell University




2-D Rotation

o] (X,1 Y’) About origin




2-D Rotation

* This is easy to capture in matrix form:

x| [cos(@) —sin(@)] x
y' _fin(e) cos(@) |y

Y -
R
= Even though sin(06) and cos(6) are nonlinear
functions of 0,
— X’ Is a linear combination of X and y
— Yy’ iIs a linear combination of X and y

= |nverse transformation, rotation by —6
— For rotation matrices, det(R) =1 and R'=R"'
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2x2 Transformation Matrices

= What types of transformations can be
represented with a 2x2 matrix?

2D Identity? (A rotation)

= Bl

2D Scale around (O O)’?
X'=§,*X i Tx

y'=s,*y y' 0 s




2x2 Transformation Matrices

= What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?

X'=C0SO*X—sin®*y {X}:{Cf)s@ _Sm(ﬂ{x}
y'=Sin®*X+cosO*y y SIN®  Ccos® | y

2D Shear? %1 [ 1 sh. Ix]
|: h * —
X'=X+sh *y y| 7| sh, |y
y'=sh, *x+y




2x2 Transformation Matrices

= What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?

= ikl

2D Mirror over (0,0)?

=R R




All 2D Linear Transformations

= Linear transformations are combinations of ...
— Scale,

— Rotation, |:X':|_|:a b:||:X:|
— Shear, and v
— Mirror y c d y

= Properties of linear transformations:
— Origin maps to origin
— Lines map to lines
— Parallel lines remain parallel
— Ratios are preserved
— Closed under composition

K Y
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Linear Transformations as Change of
Basis

J =(0,1)

v =(Vx’Vy)

p1

- I
'

U=(UX,Uy)

1 =(1,0) ,
;e L p, =4u,+3v,
p—4|+3j = 54,3) o i P _4U+:_3V py’=4uy+3vy
: u, Vy 4 u, Vy
P = = P
_uy VY__3_ _uy VY_




2x2 Transformation Matrices

= What types of transformations can be
represented with a 2x2 matrix?

2D Translation?
X'=X+1,

y'=y+t,

NO!

Only linear 2D transformations
can be represented with a 2x2 matrix
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Homogeneous Coordinates

= How can we represent translation as

matrix? X'= X+,

y'=y+t,

* Homogeneous coordinates
— Represent coordinates in 2 dimensions with a 3-

vector —
_ X
X homogeneous coords
2L Y
y
- - 1
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Homogeneous Coordinates

= Add a 3rd coordinate to every 2D point

— (X, Y, W) represents a point at 2D location
(X/w, y/w)

— (X, Y, 0) represents a point at infinity
— (0, 0O, 0) is not allowed

PA
21

14 o

(2,1,1) or (4,2,2) or (6,3,3)
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Homogeneous Coordinates

= How can we represent translation as
matrix?
X'=X+1,
y'=y+t,

= Last column of homogeneous matrix

) tx_
Translation = t,

1

o O BB
o = O
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Translation

= Example of translation in homogeneous

coordinates
T [1 0 t |[x] [x+t,
=10 1 t |y|=|Yy+t,
_O 0 1J 1 1

s

< X

Hl\)

L
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Homogeneous 2D Transformations

= Basic 2D transformations as 3x3 matrices

x| [1 0 t|x x| s, 0 0Ofx
y =0 1 t |y y'|l=10 s, Ofy
1] |10 0 1)1} 1] (0 0 1)1
Translate Scale
(x'] [cos® —sin® O] x| (x'| [ 1 sh, Of x|
y'|=|sin® cos® 0|y y'|=|sh, 1 O0Ofy
1] | 0 0 111 1] | O 0 1]1]
Rotate Shear
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Affine Transformations

= Affine transformations are ... X
— Linear transformations, and
— Translations - - b - -

= Properties of affine transformations:

— Lines map to lines

— Parallel lines remain parallel

— Ratios are preserved

— Closed under composition

— Models change of basis

— Maps any triangle to any triangle (or parallelogram)




Projective Transformations

* Projective transformations ... X a b

— Affine transformations, and W g h i|w

-h O
>

— Projective warps
= Properties of projective transformations:

— Lines map to lines

— Closed under composition
— Models change of basis
— Maps any quadrilateral to any quadrilateral




Matrix Composition

= Transformations can be combined
(composed) by matrix multiplication

x|l ([1 0 tx|cos®
y'i=/10 1 ty||sin®
w| (|0 0 1 0

P = Tt

—sin® Ofsx O

cos® O0f 0 sy
0 1o 0O

R(©) S(s,.8y)

— OO

S < X




2D 1mage transformations

s
y‘ m Q projective
translation O ﬁ
-

P
Euclidean Ae

S~ X
Name Matrix | #D.OF. | Preserves: Icon
translation (1|t ]
rigid (Euclidean) [ R|t ] O
similarity [sR|t] @
affine [ A] [/
projective | H | Q

* Nested set of groups
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Affine Invariants

Affine transformations preserve collinearity of
points:

— If 3 points lie on the same line, their images under affine
transformations also line on the same line and,

— The middle point remains between the other two points

Concurrent lines remain concurrent (images of
Intersecting lines intersect),

Ratio of length of line segments of a given line
remains constant

Ratio of areas of two triangles remains constant,

Ellipses remain ellipses and the same is true for
parabolas and hyperbolas




3D Interpretations

= Orthographic projection plus scaling of
Euclidean motion in 3D world yields 2D
affine transformation

— Often called weak perspective imaging model

= Set of coplanar points in 3D
— Undergo rigid body motion

— Scaling — analogous to perspective size with
distance but same scaling for all the points

— Projection into image plane (drop coordinate)
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Orthographic Projection

= Also called “parallel projection”: (X, vV, z) — (X, Y)
= What'’s the projection matrix (homogeneous coords)?

ooo0]1]|" En

!
0 =y | =(x,9)
0 1

=N
L
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Weak Perspective Imaging

= Scaling In addition to parallel projection

[ HH
= | vy |= (dz,dy)

0
1
0 | 1/d |

o OO

O Or

1/d

=N e 8
1 ]

= Composed with 3D rigid body motion (6 dof)

(ec-mewﬁ egosn fodny —slhoewsy ewamm oy +enaddny m)
I

_ [dreewd dpoasnfdny +ewaewy dpadnfowy—ewany @
—gln & eor@elny eoe Feoey i

X i i i

= Equivalent to affine transformation of plane
(6 dof) up to reflection — state without proof
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Projection — Pinhole Camera Model

4 PP

L (2
..‘d ..... / __l,(-x: y' -d) (33) ya Z) — (_d;j _d;j _d)
¥

.---'/T’% Y. 2)
;. COP| T
%)

/ (2,,2) = (=d=, —d”
< <

= Projection equations
— Compute intersection with PP of ray from (X,y,z) to COP
— Derived using similar triangles
— Parallel projection where d infinite
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Perspective Projection

* Homogeneous coordinates

@ Cornell University

= e 8

=N e 8

T
Y

| —z/d_

= (—df,
Z

—d¥)

z

Divide by third coordinate

_ —d -

4

= (—df,
Z

—d?)
Z

Scaling projection matrix, no effect




Perspective Projection

= Composed with 3D rigid body motion (6 dof)

= Focal length, d, and distance z two additional
parameters

= Equivalent to projective transformation of
plane (homography)
— 3X3 matrix in homogeneous coordinates, 8 dof
— Again state without proof

= 2D affine and projective transformations
correspond to images of plane in space
under rigid motion, different imaging models
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Ilmage Warping

= Given coordinate transform (X’,y’) =
T(X,y) and source image f(X,y)

* How do we compute transformed image
g(x,y’) = 1(T(X,y))?
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Forward Warping

= Send each pixel f(x,y) to its corresponding
location

(x,y’) = T(X,y) In the second image

Q: What about when pixel lands “between” two pixels?
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Forward Warping

Points at pixel
] T(x,y) centers
L L

X fxy) < gy
= Send each pixel f(x,y) to its corresponding
location

(x,y’) = T(X,y) In the second image

Q: What about when pixel lands “between” two pixels?

A: Distribute color among neighboring pixels (x’,y’)
— Known as “splatting”
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Inverse Warping

= Get each pixel g(x’,y’) from its
corresponding location

(x,y) = T-1(x’,y’) in the first image
Q: What about when pixel comes from “between” two pixels?
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Inverse Warping

/—m.
T T
X fxy) < gy)

= Get each pixel g(x’,y’) from its
corresponding location
(x,y) = T-1(xX’,y’) in the first image

Q: What about when pixel comes from “between” two pixels?

A: Interpolate color value from neighbors
— Nearest neighbor, bilinear, Gaussian, bicubic
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Bilinear Interpolation (Reminder)

= Sampling at f(x,y):
(4,7 +1) (+1,7+1)

(z,y)

b
(2,7) (14 1,7)

flzy)= (1—a)(1-0) f
+a(l1-0b)  fli+1,]]

+ab 1

+(1—-a) f
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Forward vs. Inverse Warping

= Q: Which is better?

= A: Usually inverse — eliminates holes

— However, requires an invertible warp function — not
always possible...

projective

affine
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