

First Assignment

- Wells paper handout for question 1
- Question 2 more open ended
- Less accurate approximations
- Simple box filtering doesn't work
- Anisotropic, spatially dependent

I mage Warping

- Image filtering: change range of image

$$
g(x)=T \star f(x)
$$

- Image warping: change domain of image

$$
g(x)=f(T(x))
$$

Feature Detection in I mages

- Filtering to provide area of support
- Gaussian, bilateral, ...
- Measures of local image difference
- Edges, corners
- More sophisticated features are invariant to certain transformations or warps of the image
- E.g., as occur when viewing direction changes

Parametric (Global) Warping

- Examples of parametric warps:

translation

affine

projective

cylindrical

Parametric (Global) Warping

$$
\mathbf{p}=(\mathrm{x}, \mathrm{y})
$$

$\mathbf{p}^{\prime}=\left(x^{\prime}, y^{\prime}\right)$

$$
p^{\prime}=T(p)
$$

- What does it mean that T is global?
- Same function for any point p
- Described by a few parameters, often matrix

$$
\mathrm{p}^{\prime}=\mathbf{M}^{*} \mathrm{p}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{M}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Scaling

- Scaling a coordinate means multiplying each of its components (axes) by a scalar
- Uniform scaling means this scalar is the same for all components:

Scaling

- Non-uniform scaling: different scalars per component:

Scaling

- Scaling operation:

$$
\begin{aligned}
& x^{\prime}=a x \\
& y^{\prime}=b y
\end{aligned}
$$

- Or, in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]}_{\text {scaling matrix } S}
$$

What's inverse of S?

2-D Rotation

2-D Rotation

- This is easy to capture in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right], ~}_{\mathbf{R}}
$$

- Even though $\sin (\theta)$ and $\cos (\theta)$ are nonlinear functions of θ,
- x^{\prime} is a linear combination of x and y
- y^{\prime} is a linear combination of x and y
- Inverse transformation, rotation by $-\theta$
- For rotation matrices, $\operatorname{det}(\mathrm{R})=1$ and $\mathbf{R}^{-1}=\mathbf{R}^{T}$

2x2 Transformation Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Identity? (A rotation)

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Scale around (0,0)?

$$
\begin{aligned}
& x^{\prime}=s_{x} * x \\
& y^{\prime}=s_{y} * y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$\mathbf{2 x 2}$ Transformation Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Rotate around $(0,0)$?

$$
\begin{aligned}
& x^{\prime}=\cos \Theta^{*} x-\sin \Theta^{*} y \\
& y^{\prime}=\sin \Theta^{*} x+\cos \Theta^{*} y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \Theta & -\sin \Theta \\
\sin \Theta & \cos \Theta
\end{array}\right]\left[\begin{array}{l}
x \\
\boldsymbol{y}
\end{array}\right]
$$

2D Shear?

$$
\begin{aligned}
& x^{\prime}=x+s h_{x} * y \\
& y^{\prime}=s h_{y} * x+y
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & s h_{x} \\
s h_{y} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2x2 Transformation Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Mirror about Y axis?

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Mirror over $(0,0)$?

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=-y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

All 2D Linear Transformations

- Linear transformations are combinations of ...
- Scale,
- Rotation,
- Shear, and
- Mirror

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Properties of linear transformations:
- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Linear Transformations as Change of Basis

$p=4 i+3 j=(4,3)$

$p_{x}^{\prime}=4 u_{x}+3 v_{x}$
$p_{y}^{\prime}=4 u_{y}+3 v_{y}$

$$
\mathbf{p}^{\prime}=\left[\begin{array}{ll}
u_{x} & v_{x} \\
u_{y} & v_{y}
\end{array}\right]\left[\begin{array}{l}
4 \\
3
\end{array}\right]=\left[\begin{array}{ll}
u_{x} & v_{x} \\
u_{y} & v_{y}
\end{array}\right] \mathbf{p}
$$

- Any linear transformation is a basis!

$\mathbf{2 x 2}$ Transformation Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Translation?

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

NO!

Only linear 2D transformations can be represented with a 2×2 matrix

Homogeneous Coordinates

- How can we represent translation as matrix?

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

- Homogeneous coordinates
- Represent coordinates in 2 dimensions with a 3vector

Homogeneous Coordinates

- Add a 3rd coordinate to every 2D point
- (x,y,w) represents a point at 2D location ($x / w, y / w$)
- ($x, y, 0$) represents a point at infinity
- $(0,0,0)$ is not allowed

Homogeneous Coordinates

- How can we represent translation as matrix?

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

- Last column of homogeneous matrix

$$
\text { Translation }=\left[\begin{array}{ccc}
1 & 0 & \boldsymbol{t}_{x} \\
0 & 1 & \boldsymbol{t}_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Translation

- Example of translation in homogeneous coordinates

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
1
\end{array}\right]
$$

Homogeneous 2D Transformations

- Basic 2D transformations as 3×3 matrices

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

Translate

$$
\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 \\
0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]
$$

Scale

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Rotate

$$
\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & \boldsymbol{s h}_{x} & 0 \\
\boldsymbol{s h}_{y} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]
$$

Shear

Affine Transformations

- Affine transformations are ...
- Linear transformations, and
- Translations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

- Properties of affine transformations:
- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition
- Models change of basis
- Maps any triangle to any triangle (or parallelogram)

Projective Transformations

$\begin{gathered}\text { - Projective transformations } . . . \\ \text { - Affine transformations, and }\end{gathered}\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ w^{\prime}\end{array}\right]=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\left[\begin{array}{l}x \\ y \\ w\end{array}\right]$

- Projective warps
- Properties of projective transformations:
- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
- Models change of basis
- Maps any quadrilateral to any quadrilateral

Matrix Composition

- Transformations can be combined (composed) by matrix multiplication

$$
\begin{aligned}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right] } & =\left(\left[\begin{array}{lll}
1 & 0 & t x \\
0 & 1 & t y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s x & 0 & 0 \\
0 & s y & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \\
\mathbf{p}^{\prime} & =\mathrm{T}\left(\mathrm{t}_{x}, \mathrm{t}_{y}\right)
\end{aligned}
$$

2D image transformations

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]$		\square	
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]$		\square	
similarity	$\left[\begin{array}{l}\boldsymbol{R} \mid \boldsymbol{t}]\end{array}\right.$		\square	
affine			\square	\square
projective	$[\tilde{\boldsymbol{H}}]$		\square	

- Nested set of groups

Affine I nvariants

- Affine transformations preserve collinearity of points:
- If 3 points lie on the same line, their images under affine transformations also line on the same line and,
- The middle point remains between the other two points
- Concurrent lines remain concurrent (images of intersecting lines intersect),
- Ratio of length of line segments of a given line remains constant
- Ratio of areas of two triangles remains constant,
- Ellipses remain ellipses and the same is true for parabolas and hyperbolas

3D I nterpretations

- Orthographic projection plus scaling of Euclidean motion in 3D world yields 2D affine transformation
- Often called weak perspective imaging model
- Set of coplanar points in 3D
- Undergo rigid body motion
- Scaling - analogous to perspective size with distance but same scaling for all the points
- Projection into image plane (drop coordinate)

Orthographic Projection

- Also called "parallel projection": $(x, y, z) \rightarrow(x, y)$
- What's the projection matrix (homogeneous coords)?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \Rightarrow(x, y)
$$

Weak Perspective I maging

- Scaling in addition to parallel projection

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / d
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
1 / d
\end{array}\right] \Rightarrow(d x, d y)
$$

- Composed with 3D rigid body motion (6 dof)
- Equivalent to affine transformation of plane (6 dof) up to reflection - state without proof

Projection - Pinhole Camera Model

$$
\begin{aligned}
& (x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z},-d\right) \\
& (x, y, z) \rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)
\end{aligned}
$$

- Projection equations
- Compute intersection with PP of ray from (x, y, z) to COP
- Derived using similar triangles
- Parallel projection where d infinite

Perspective Projection

- Homogeneous coordinates

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=} & {\left[\begin{array}{c}
x \\
y \\
-z / d
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},\right.}
\end{array}\right] d \frac{d}{z}\right)
$$

$$
\left[\begin{array}{cccc}
-d & 0 & 0 & 0 \\
0 & -d & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
-d x \\
-d y \\
z
\end{array}\right] \Rightarrow\left(-d \frac{x}{z},-d \frac{y}{z}\right)
$$

Scaling projection matrix, no effect

Perspective Projection

- Composed with 3D rigid body motion (6 dof)
- Focal length, d, and distance z two additional parameters
- Equivalent to projective transformation of plane (homography)
- 3×3 matrix in homogeneous coordinates, 8 dof
- Again state without proof
- 2D affine and projective transformations correspond to images of plane in space under rigid motion, different imaging models

I mage Warping

- Given coordinate transform (x^{\prime}, y^{\prime}) = $T(x, y)$ and source image $f(x, y)$
- How do we compute transformed image $g\left(x^{\prime}, y^{\prime}\right)=f(T(x, y))$?

Forward Warping

- Send each pixel $f(x, y)$ to its corresponding location

$$
\left(x^{\prime}, y^{\prime}\right)=T(x, y) \text { in the second image }
$$

Q: What about when pixel lands "between" two pixels?

Forward Warping

- Send each pixel $f(x, y)$ to its corresponding location

$$
\left(x^{\prime}, y^{\prime}\right)=T(x, y) \text { in the second image }
$$

Q: What about when pixel lands "between" two pixels?
A: Distribute color among neighboring pixels (x^{\prime}, y^{\prime})

- Known as "splatting"

I nverse Warping

- Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location

$$
(x, y)=T^{-1}\left(x^{\prime}, y^{\prime}\right) \text { in the first image }
$$

Q: What about when pixel comes from "between" two pixels?

I nverse Warping

- Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location

$$
(x, y)=T^{-1}\left(x^{\prime}, y^{\prime}\right) \text { in the first image }
$$

Q: What about when pixel comes from "between" two pixels?
A: Interpolate color value from neighbors

- Nearest neighbor, bilinear, Gaussian, bicubic

Bilinear I nterpolation (Reminder)

- Sampling at $f(x, y)$:

$$
\begin{array}{cll}
f(x, y)=(1-a)(1-b) & f[i, j] \\
+a(1-b) & f[i+1, j] \\
\quad+a b & f[i+1, j+1] \\
+(1-a) b & f[i, j+1]
\end{array}
$$

Forward vs. I nverse Warping

- Q: Which is better?
- A: Usually inverse - eliminates holes
- However, requires an invertible warp function - not always possible...

affine

Reference

- R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, $2^{\text {nd }}$ Ed., Cambridge Univ. Press, 2003.

