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First Assignment

Wells paper handout for question 1
Question 2 more open ended
– Less accurate approximations

• Simple box filtering doesn’t work

– Anisotropic, spatially dependent
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Image Warping

T

T

f

f g

g

Image filtering: change range of image
g(x) = T f(x)

Image warping: change domain of image

g(x) = f(T(x))



4

Feature Detection in Images

Filtering to provide area of support
– Gaussian, bilateral, …

Measures of local image difference
– Edges, corners

More sophisticated features are invariant 
to certain transformations or warps of the 
image
– E.g., as occur when viewing direction changes
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Parametric (Global) Warping

Examples of parametric warps:

translation rotation

affine projective
cylindrical
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Parametric (Global) Warping

p’ = T(p) 
What does it mean that T is global?
– Same function for any point p
– Described by a few parameters, often matrix

T

p = (x,y) p’ = (x’,y’)
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Scaling

Scaling a coordinate means multiplying each of 
its components (axes) by a scalar
Uniform scaling means this scalar is the same for 
all components:

× 2
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Non-uniform scaling: different scalars per 
component:

Scaling

X × 2,
Y × 0.5
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Scaling

Scaling operation:

Or, in matrix form:

byy
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scaling matrix S

What’s inverse of S?
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2-D Rotation

θ

(x, y)

(x’, y’)

x’ = x cos(θ) - y sin(θ)
y’ = x sin(θ) + y cos(θ)

About origin
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2-D Rotation

This is easy to capture in matrix form:

Even though sin(θ) and cos(θ) are nonlinear 
functions of θ,
– x’ is a linear combination of x and y
– y’ is a linear combination of x and y

Inverse transformation, rotation by –θ
– For rotation matrices, det(R) = 1 and
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2x2 Transformation Matrices

What types of transformations can be 
represented with a 2x2 matrix?

2D Identity? (A rotation)
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2D Scale around (0,0)?
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2x2 Transformation Matrices

What types of transformations can be 
represented with a 2x2 matrix?

2D Rotate around (0,0)?

yxy
yxx

*cos*sin'
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2D Shear?
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2x2 Transformation Matrices

What types of transformations can be 
represented with a 2x2 matrix?

2D Mirror about Y axis?
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2D Mirror over (0,0)?
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All 2D Linear Transformations

Linear transformations are combinations of …
– Scale,
– Rotation,
– Shear, and
– Mirror

Properties of linear transformations:
– Origin maps to origin
– Lines map to lines
– Parallel lines remain parallel
– Ratios are preserved
– Closed under composition
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Linear Transformations as Change of 
Basis

Any linear transformation is a basis!

j =(0,1)

i =(1,0)

p

p=4i+3j = (4,3) p’=4u+3v
px’=4ux+3vx
py’=4uy+3vy

v =(vx,vy)

u=(ux,uy)

p’
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2x2 Transformation Matrices

What types of transformations can be 
represented with a 2x2 matrix?

2D Translation?
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Only linear 2D transformations 
can be represented with a 2x2 matrix

NO!
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Homogeneous Coordinates

How can we represent translation as 
matrix?

Homogeneous coordinates
– Represent coordinates in 2 dimensions with a 3-

vector
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Homogeneous Coordinates

Add a 3rd coordinate to every 2D point
– (x, y, w) represents a point at 2D location 

(x/w, y/w)
– (x, y, 0) represents a point at infinity
– (0, 0, 0) is not allowed

1 2

1

2 (2,1,1) or (4,2,2) or (6,3,3)

x

y



20

Homogeneous Coordinates
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How can we represent translation as 
matrix?

Last column of homogeneous matrix
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Translation

Example of translation in homogeneous 
coordinates
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Homogeneous 2D Transformations

Basic 2D transformations as 3x3 matrices
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Affine Transformations

Affine transformations are …
– Linear transformations, and
– Translations

Properties of affine transformations:
– Origin does not necessarily map to origin
– Lines map to lines
– Parallel lines remain parallel
– Ratios are preserved
– Closed under composition
– Models change of basis
– Maps any triangle to any triangle (or parallelogram)
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Projective Transformations

Projective transformations …
– Affine transformations, and
– Projective warps

Properties of projective transformations:
– Origin does not necessarily map to origin
– Lines map to lines
– Parallel lines do not necessarily remain parallel
– Ratios are not preserved
– Closed under composition
– Models change of basis
– Maps any quadrilateral to any quadrilateral
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Matrix Composition

Transformations can be combined 
(composed) by matrix multiplication
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2D image transformations

• Nested set of groups
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Affine Invariants

Affine transformations preserve collinearity of 
points: 
– If 3 points lie on the same line, their images under affine 

transformations also line on the same line and, 
– The middle point remains between the other two points

Concurrent lines remain concurrent (images of 
intersecting lines intersect), 
Ratio of length of line segments of a given line 
remains constant 
Ratio of areas of two triangles remains constant, 
Ellipses remain ellipses and the same is true for 
parabolas and hyperbolas
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3D Interpretations

Orthographic projection plus scaling of 
Euclidean motion in 3D world yields 2D 
affine transformation
– Often called weak perspective imaging model

Set of coplanar points in 3D
– Undergo rigid body motion
– Scaling – analogous to perspective size with 

distance but same scaling for all the points
– Projection into image plane (drop coordinate)
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Orthographic Projection

Also called “parallel projection”:  (x, y, z) → (x, y)
What’s the projection matrix (homogeneous coords)?

Image World
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Weak Perspective Imaging

Scaling in addition to parallel projection

Composed with 3D rigid body motion (6 dof)

Equivalent to affine transformation of plane 
(6 dof) up to reflection – state without proof
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Projection – Pinhole Camera Model

Projection equations
– Compute intersection with PP of ray from (x,y,z) to COP
– Derived using similar triangles
– Parallel projection where d infinite 
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Perspective Projection

Homogeneous coordinates

Divide by third coordinate

Scaling projection matrix, no effect
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Perspective Projection

Composed with 3D rigid body motion (6 dof)
Focal length, d, and distance z two additional 
parameters
Equivalent to projective transformation of 
plane (homography)
– 3x3 matrix in homogeneous coordinates, 8 dof
– Again state without proof

2D affine and projective transformations 
correspond to images of plane in space 
under rigid motion, different imaging models
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Image Warping

Given coordinate transform (x’,y’) =
T(x,y) and source image f(x,y)
How do we compute transformed image 
g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’
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f(x,y) g(x’,y’)

Forward Warping

Send each pixel f(x,y) to its corresponding 
location 

(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q:  What about when pixel lands “between” two pixels?

y y’
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f(x,y) g(x’,y’)

Forward Warping

Send each pixel f(x,y) to its corresponding 
location 

(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q:  What about when pixel lands “between” two pixels?

y y’

A:  Distribute color among neighboring pixels (x’,y’)
– Known as “splatting”

Points at pixel 
centers
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f(x,y) g(x’,y’)x
y

Inverse Warping

Get each pixel g(x’,y’) from its 
corresponding location 

(x,y) = T-1(x’,y’) in the first image

x x’

Q: What about when pixel comes from “between” two pixels?

y’
T-1(x,y)
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f(x,y) g(x’,y’)x
y

Inverse Warping

Get each pixel g(x’,y’) from its 
corresponding location 

(x,y) = T-1(x’,y’) in the first image

x x’

T-1(x,y)

Q:  What about when pixel comes from “between” two pixels?

y’

A:  Interpolate color value from neighbors
– Nearest neighbor, bilinear, Gaussian, bicubic
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Bilinear Interpolation (Reminder)

Sampling at f(x,y):



40

Forward vs. Inverse Warping

Q:  Which is better?

A:  Usually inverse – eliminates holes
– However, requires an invertible warp function – not 

always possible...

affine projective
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