
Creating a Hello World DAG
Assuming that Airflow is already setup, we will create our first hello world DAG. All it will do is
print a message to the log.

Below is the code for the DAG.

from datetime import datetime
from airflow import DAG
from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.python_operator import PythonOperator

def print_hello():
 return 'Hello world from first Airflow DAG!'

dag = DAG('hello_world', description='Hello World DAG',
 schedule_interval='0h 12 * * *',
 start_date=datetime(2017, 3, 20), catchup=False)

hello_operator = PythonOperator(task_id='hello_task',
python_callable=print_hello, dag=dag)

hello_operator

We place this code (DAG) in our AIRFLOW_HOME directory under the dags folder. We name it
hello_world.py.

├── airflow-webserver-monitor.pid
├── airflow-webserver.err
├── airflow-webserver.log
├── airflow-webserver.out
├── airflow-webserver.pid
├── airflow.cfg
├── airflow.db
├── airflow.db-journal
├── dags
│ ├── __pycache__
│ │ └── hello_world.cpython-36.pyc
│ └── hello_world.py

Let us understand what we have done in the file:

• In the first few lines, we are simply importing a few packages from airflow.
• Next, we define a function that prints the hello message.
• After that, we declare the DAG. It takes arguments such as name, description,

schedule_interval, start_date and catchup. Setting catchup to false prevents Airflow from
having the DAG runs catch up to the current date.

• Next, we define the operator and call it the hello_operator. In essence, this uses the in-built
PythonOperator to call our print_hello function. We also provide a task_id to this operator.

• The last statement specifies the order of the operators. In this case, we have only one
operator.

https://mitu.co.in

https://mitu.co.in/

Running the DAG
To run the DAG, we need to start the Airflow scheduler by executing the below command:

airflow scheduler

Airflow scheduler is the entity that actually executes the DAGs. By default, we use
SequentialExecutor which executes tasks one by one. In case of more complex workflow, we can
use other executors such as LocalExecutor or CeleryExecutor.

If we have the Airflow webserver also running, we would be able to see our hello_world DAG in
the list of available DAGs.

To start the DAG, we can to turn on the DAG by clicking the toggle button before the name of the
DAG. As soon as that is done, we would be able to see messages in the scheduler logs about the
DAG execution.

[2021-07-03 11:49:16,962] {scheduler_job.py:1212} INFO - Executor reports
execution of hello_world.hello_task execution_date=2021-07-01 12:00:00+00:00
exited with status success for try_number 1
[2021-07-03 11:49:17,100] {dagrun.py:444} INFO - Marking run <DagRun hello_world
@ 2021-07-01 12:00:00+00:00: scheduled__2021-07-01T12:00:00+00:00, externally
triggered: False> successful

We can also see the DAG graph view where the hello_world operator has executed successfully.

By clicking on the task box and opening the logs, we can see the logs as below:

[2021-07-03 11:49:16,755] {python.py:151} INFO - Done. Returned value was: Hello
world from first Airflow DAG!

https://mitu.co.in

https://mitu.co.in/

[2021-07-03 11:49:16,768] {taskinstance.py:1191} INFO - Marking task as SUCCESS.
dag_id=hello_world, task_id=hello_task, execution_date=20210701T120000,
start_date=20210703T061916, end_date=20210703T061916
[2021-07-03 11:49:16,781] {taskinstance.py:1245} INFO - 0 downstream tasks
scheduled from follow-on schedule check
[2021-07-03 11:49:16,820] {local_task_job.py:151} INFO - Task exited with return
code 0

Here, we can see the hello world message. In other words, our DAG executed successfully and the
task was marked as SUCCESS.

With this Airflow DAG Example, we have successfully created our first DAG and executed it
using Airflow. Though it was a simple hello message, it has helped us understand the concepts
behind a DAG execution in detail.

https://mitu.co.in

https://mitu.co.in/

	Creating a Hello World DAG
	Running the DAG

