
Object Recognition

Tushar B. Kute,
http://tusharkute.com

Object Recognition

• Object recognition in image processing refers to
the task of identifying and classifying objects within
digital images or video frames.

• It involves the use of computer vision techniques
and machine learning algorithms to automatically
detect and recognize objects of interest in visual
data.

Object Recognition

• The goal of object recognition is to assign
meaningful labels or categories to objects in an
image.

• This can involve identifying common objects such as
cars, people, animals, or specific object instances
such as a particular breed of dog or a specific model
of car.

Object Recognition

• Object recognition typically involves several steps,
including:
– Preprocessing: This step involves preparing the image

data for analysis by performing operations such as
resizing, normalizing, or enhancing the image.

– Feature Extraction: Features that represent
discriminative characteristics of objects are extracted
from the preprocessed image. These features can be
low-level visual descriptors like edges, corners, or
textures, or higher-level features learned from deep
neural networks.

Object Recognition

• Classification or Detection: The extracted features are
used to classify the objects or detect their presence in
the image. Classification involves assigning a specific
label or category to an entire image, while detection
involves localizing and classifying objects within an
image.

• Post-processing: After classification or detection, post-
processing techniques are applied to refine the results,
such as filtering out false positives, grouping
detections, or estimating object poses and attributes.

Image Processing

• As such, we can distinguish between these three
computer vision tasks:
– Image Classification: Predict the type or class of an

object in an image.
• Input: An image with a single object, such as a

photograph.
• Output: A class label (e.g. one or more integers

that are mapped to class labels).

Image Processing

• Object Localization: Locate the presence of objects in
an image and indicate their location with a bounding
box.
– Input: An image with one or more objects, such as a

photograph.
– Output: One or more bounding boxes (e.g. defined

by a point, width, and height).

Image Processing

• Object Detection: Locate the presence of objects with a
bounding box and types or classes of the located
objects in an image.
– Input: An image with one or more objects, such as a

photograph.
– Output: One or more bounding boxes (e.g. defined

by a point, width, and height), and a class label for
each bounding box.

Image Processing

Image Processing

The RCNN Model Family

• The R-CNN family of methods refers to the R-CNN,
which may stand for “Regions with CNN Features” or
“Region-Based Convolutional Neural Network,”
developed by Ross Girshick, et al.

• This includes the techniques R-CNN, Fast R-CNN, and
Faster-RCNN designed and demonstrated for object
localization and object recognition.

The RCNN

• The R-CNN was described in the 2014 paper by Ross
Girshick, et al. from UC Berkeley titled “Rich feature
hierarchies for accurate object detection and semantic
segmentation.”

• It may have been one of the first large and successful
application of convolutional neural networks to the
problem of object localization, detection, and
segmentation.

• The approach was demonstrated on benchmark datasets,
achieving then state-of-the-art results on the VOC-2012
dataset and the 200-class ILSVRC-2013 object detection
dataset.

The RCNN

• Proposed R-CNN model is comprised of three modules;
they are:
– Module 1: Region Proposal. Generate and extract

category independent region proposals, e.g.
candidate bounding boxes.

– Module 2: Feature Extractor. Extract feature from
each candidate region, e.g. using a deep
convolutional neural network.

– Module 3: Classifier. Classify features as one of the
known class, e.g. linear SVM classifier model.

The RCNN

RCNN

• A computer vision technique is used to propose
candidate regions or bounding boxes of potential objects
in the image called “selective search,” although the
flexibility of the design allows other region proposal
algorithms to be used.

• The feature extractor used by the model was the
AlexNet deep CNN that won the ILSVRC-2012 image
classification competition.

• The output of the CNN was a 4,096 element vector that
describes the contents of the image that is fed to a linear
SVM for classification, specifically one SVM is trained for
each known class.

Fast-RCNN

• Given the great success of R-CNN, Ross Girshick, then at
Microsoft Research, proposed an extension to address the
speed issues of R-CNN in a 2015 paper titled “Fast R-CNN.”

• The paper opens with a review of the limitations of R-CNN,
which can be summarized as follows:
– Training is a multi-stage pipeline. Involves the

preparation and operation of three separate models.
– Training is expensive in space and time. Training a deep

CNN on so many region proposals per image is very slow.
– Object detection is slow. Make predictions using a deep

CNN on so many region proposals is very slow.

Fast-RCNN

• A prior work was proposed to speed up the technique
called spatial pyramid pooling networks, or SPPnets, in
the 2014 paper “Spatial Pyramid Pooling in Deep
Convolutional Networks for Visual Recognition.”

• This did speed up the extraction of features, but
essentially used a type of forward pass caching
algorithm.

• Fast R-CNN is proposed as a single model instead of a
pipeline to learn and output regions and classifications
directly.

Fast-RCNN

• The architecture of the model takes the photograph a
set of region proposals as input that are passed through
a deep convolutional neural network.

• A pre-trained CNN, such as a VGG-16, is used for feature
extraction.

• The end of the deep CNN is a custom layer called a
Region of Interest Pooling Layer, or RoI Pooling, that
extracts features specific for a given input candidate
region.

Fast-RCNN

• The output of the CNN is then interpreted by a fully
connected layer then the model bifurcates into two
outputs, one for the class prediction via a softmax layer,
and another with a linear output for the bounding box.

• This process is then repeated multiple times for each
region of interest in a given image.

Fast-RCNN

Faster-RCNN

• The model architecture was further improved for both
speed of training and detection by Shaoqing Ren, et al.
at Microsoft Research in the 2016 paper titled “Faster R-
CNN: Towards Real-Time Object Detection with Region
Proposal Networks.”

• The architecture was the basis for the first-place results
achieved on both the ILSVRC-2015 and MS COCO-2015
object recognition and detection competition tasks.

Faster-RCNN

• The architecture was designed to both propose and
refine region proposals as part of the training process,
referred to as a Region Proposal Network, or RPN.

• These regions are then used in concert with a Fast R-
CNN model in a single model design.

• These improvements both reduce the number of region
proposals and accelerate the test-time operation of the
model to near real-time with then state-of-the-art
performance.

Faster-RCNN

• Although it is a single unified model, the architecture is
comprised of two modules:
– Module 1: Region Proposal Network. Convolutional

neural network for proposing regions and the type of
object to consider in the region.

– Module 2: Fast R-CNN. Convolutional neural network
for extracting features from the proposed regions
and outputting the bounding box and class labels.

Faster-RCNN

• Both modules operate on the same output of a
deep CNN.

• The region proposal network acts as an attention
mechanism for the Fast R-CNN network, informing
the second network of where to look or pay
attention.

Faster-RCNN

Faster-RCNN

• The RPN works by taking the output of a pre-trained
deep CNN, such as VGG-16, and passing a small
network over the feature map and outputting
multiple region proposals and a class prediction for
each.

• Region proposals are bounding boxes, based on so-
called anchor boxes or pre-defined shapes designed
to accelerate and improve the proposal of regions.

• The class prediction is binary, indicating the
presence of an object, or not, so-called “objectness”
of the proposed region.

Faster-RCNN

• A procedure of alternating training is used where both sub-
networks are trained at the same time, although
interleaved.

• This allows the parameters in the feature detector deep
CNN to be tailored or fine-tuned for both tasks at the same
time.

• At the time of writing, this Faster R-CNN architecture is the
pinnacle of the family of models and continues to achieve
near state-of-the-art results on object recognition tasks.

• A further extension adds support for image segmentation,
described in the paper 2017 paper “Mask R-CNN.”

Image Segmentation

• This technique gives us a far more granular
understanding of the object(s) in the image.

• The image shown below will help you to
understand what image segmentation is:

Image Segmentation

• All 5 objects in the left image are people. Hence,
semantic segmentation will classify all the people as a
single instance.

• Now, the image on the right also has 5 objects (all of
them are people). But here, different objects of the
same class have been assigned as different instances.
This is an example of instance segmentation.

Mask RCNN

• Mask R-CNN is basically an extension of Faster R-
CNN. Faster R-CNN is widely used for object
detection tasks.

• For a given image, it returns the class label and
bounding box coordinates for each object in the
image. So, let’s say you pass the following image:

Mask RCNN

• Let’s first quickly understand how Faster R-CNN works. This
will help us grasp the intuition behind Mask R-CNN as well.
– Faster R-CNN first uses a ConvNet to extract feature maps

from the images
– These feature maps are then passed through a Region

Proposal Network (RPN) which returns the candidate
bounding boxes

– We then apply an RoI pooling layer on these candidate
bounding boxes to bring all the candidates to the same size

– And finally, the proposals are passed to a fully connected
layer to classify and output the bounding boxes for objects

Mask RCNN

• Backbone Model
– Similar to the ConvNet that we use in Faster R-

CNN to extract feature maps from the image, we
use the ResNet 101 architecture to extract
features from the images in Mask R-CNN.

– So, the first step is to take an image and extract
features using the ResNet 101 architecture.
These features act as an input for the next layer.

Mask RCNN

• Region Proposal Network (RPN)
– Now, we take the feature maps obtained in the

previous step and apply a region proposal
network (RPN).

– This basically predicts if an object is present in
that region (or not).

– In this step, we get those regions or feature
maps which the model predicts contain some
object.

Mask RCNN: Region of Interest

• The regions obtained from the RPN might be of
different shapes. Hence, we apply a pooling layer and
convert all the regions to the same shape.

• Next, these regions are passed through a fully
connected network so that the class label and
bounding boxes are predicted.

• Till this point, the steps are almost similar to how
Faster R-CNN works.

• Now comes the difference between the two
frameworks. In addition to this, Mask R-CNN also
generates the segmentation mask.

Mask RCNN: Region of Interest

• For that, we first compute the region of interest so
that the computation time can be reduced.

• For all the predicted regions, we compute the
Intersection over Union (IoU) with the ground truth
boxes. We can computer IoU like this:

IoU = Area of the intersection / Area of the union

• Now, only if the IoU is greater than or equal to 0.5, we
consider that as a region of interest. Otherwise, we
neglect that particular region.

• We do this for all the regions and then select only a set
of regions for which the IoU is greater than 0.5.

Mask RCNN: Region of Interest

Here, the IoU of Box 1 and Box 2
is possibly less than 0.5, whereas
the IoU of Box 3 and Box 4 is
approximately greater than 0.5.
Hence. we can say that Box 3
and Box 4 are the region of
interest for this particular image
whereas Box 1 and Box 2 will be
neglected.

Mask RCNN: Segmentation

• Once we have the RoIs based on the IoU values, we
can add a mask branch to the existing architecture.

• This returns the segmentation mask for each region
that contains an object.

• It returns a mask of size 28 X 28 for each region
which is then scaled up for inference.

Mask RCNN: Segmentation

COCO Dataset

• COCO is a large-scale object detection, segmentation, and
captioning dataset. COCO has several features:
– Object segmentation
– Recognition in context
– Superpixel stuff segmentation
– 330K images (>200K labeled)
– 1.5 million object instances
– 80 object categories
– 91 stuff categories
– 5 captions per image
– 250,000 people with keypoints

Mask RCNN: Segmentation

• Here, our model has segmented all the objects in the
image. This is the final step in Mask R-CNN where we
predict the masks for all the objects in the image.

• Keep in mind that the training time for Mask R-CNN is
quite high. It took me somewhere around 1 to 2 days
to train the Mask R-CNN on the famous COCO dataset.

• We will instead use the pretrained weights of the
Mask R-CNN model trained on the COCO dataset.

• Now, before we dive into the Python code, let’s look
at the steps to use the Mask R-CNN model to perform
instance segmentation.

Mask RCNN: Implementation

• Step 1: Clone the repository
– First, we will clone the mask rcnn repository

which has the architecture for Mask R-CNN. Use
the following command to clone the repository:
git clone https://github.com/matterport/Mask_RCNN.git

• Once this is done, we need to install the
dependencies required by Mask R-CNN.

Mask RCNN: Implementation

• Step 2: Install the dependencies

• Here is a list of all the dependencies for Mask R-
CNN:

 numpy scipy

 pillow cython

 matplotlib scikit-image

 tensorflow>=1.3.0 keras>=2.0.8

 opencv-python h5py

 imgaug IPython

Mask RCNN: Implementation

• Step 3: Download the pre-trained weights (trained on
MS COCO)

• Next, we need to download the pretrained weights. You
can use this link to download the pre-trained weights.

• These weights are obtained from a model that was
trained on the MS COCO dataset.

• Once you have downloaded the weights, paste this file
in the samples folder of the Mask_RCNN repository that
we cloned in step 1.

Mask RCNN: Implementation

• Step 4: Predicting for our image

• Finally, we will use the Mask R-CNN architecture
and the pretrained weights to generate predictions
for our own images.

• Once you’re done with these four steps, it’s time to
jump into your Jupyter Notebook!

• We will implement all these things in Python and
then generate the masks along with the classes and
bounding boxes for objects in our images.

YOLO Models

• Another popular family of object recognition
models is referred to collectively as YOLO or “You
Only Look Once,” developed by Joseph Redmon, et
al.

• The R-CNN models may be generally more accurate,
yet the YOLO family of models are fast, much faster
than R-CNN, achieving object detection in real-time.

YOLO Models

• The YOLO model was first described by Joseph Redmon, et al.
in the 2015 paper titled “You Only Look Once: Unified, Real-Time
Object Detection.”

• Note that Ross Girshick, developer of R-CNN, was also an author
and contributor to this work, then at Facebook AI Research.

• The approach involves a single neural network trained end to
end that takes a photograph as input and predicts bounding
boxes and class labels for each bounding box directly.

• The technique offers lower predictive accuracy (e.g. more
localization errors), although operates at 45 frames per second
and up to 155 frames per second for a speed-optimized version
of the model.

YOLO Models

• The model works by first splitting the input image
into a grid of cells, where each cell is responsible
for predicting a bounding box if the center of a
bounding box falls within the cell.

• Each grid cell predicts a bounding box involving the
x, y coordinate and the width and height and the
confidence. A class prediction is also based on each
cell.

YOLO Models

• For example, an image may be divided into a 7×7
grid and each cell in the grid may predict 2
bounding boxes, resulting in 94 proposed bounding
box predictions.

• The class probabilities map and the bounding boxes
with confidences are then combined into a final set
of bounding boxes and class labels.

• The image taken from the paper below summarizes
the two outputs of the model.

YOLO Models

YOLO: Step by Step

• 1. Divide the image into a grid of cells.
– The YOLO algorithm divides the image into a

grid of cells, typically 7x7 or 13x13.
– Each cell is responsible for predicting a set of

bounding boxes and class probabilities.

YOLO: Step by Step

• 2. Predict bounding boxes and class probabilities for
each cell.
– For each cell, the YOLO algorithm predicts a set

of bounding boxes and class probabilities.
– The bounding boxes are represented as four

coordinates: the top left corner, the bottom right
corner, and the width and height of the box.

– The class probabilities represent the probability
that the object in the box belongs to a particular
class.

YOLO: Step by Step

• 3. Apply non-max suppression.
– The bounding boxes predicted by the YOLO

algorithm may overlap.
– To remove overlapping boxes, the YOLO

algorithm applies a non-max suppression
algorithm.

– This algorithm keeps the box with the highest
confidence score, and it removes all other boxes
that have a high overlap with the selected box.

YOLO: Step by Step

• 4. Draw the bounding boxes and class labels on the
image.
– The final step is to draw the bounding boxes and

class labels on the image.
– The bounding boxes are drawn in a different

color for each class, and the class labels are
displayed next to the bounding boxes.

YOLO: Summary

• Divide the image into a grid of cells.

• Predict bounding boxes and class probabilities for
each cell.

• Apply non-max suppression.

• Draw the bounding boxes and class labels on the
image.

YOLOv2 (YOLO9000) and YOLOv3

• The model was updated by Joseph Redmon and Ali
Farhadi in an effort to further improve model
performance in their 2016 paper titled “YOLO9000:
Better, Faster, Stronger.”

• Although this variation of the model is referred to
as YOLO v2, an instance of the model is described
that was trained on two object recognition datasets
in parallel, capable of predicting 9,000 object
classes, hence given the name “YOLO9000.”

YOLOv2 (YOLO9000) and YOLOv3

• A number of training and architectural changes
were made to the model, such as the use of batch
normalization and high-resolution input images.

• Like Faster R-CNN, YOLOv2 model makes use of
anchor boxes, pre-defined bounding boxes with
useful shapes and sizes that are tailored during
training.

• The choice of bounding boxes for the image is pre-
processed using a k-means analysis on the training
dataset.

YOLOv2 (YOLO9000) and YOLOv3

• Importantly, the predicted representation of the
bounding boxes is changed to allow small changes
to have a less dramatic effect on the predictions,
resulting in a more stable model.

• Rather than predicting position and size directly,
offsets are predicted for moving and reshaping the
pre-defined anchor boxes relative to a grid cell and
dampened by a logistic function.

YOLOv2 (YOLO9000) and YOLOv3

Applications of Computer Vision

• Gender Prediction

• Image Mapping

• Face / Object Recognition

• Image Recreation

• Image Matching

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 7.4.1.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

@mITuSkillologies @mitu_group

contact@mitu.co.in

@mitu-skillologies @MITUSkillologies

@mituskillologies@mituskillologies

mailto:tushar@tusharkute.com
https://mitu.co.in/
http://tusharkute.com/
mailto:contact@mitu.co.in
https://instagram.com/mitu_skillologies
https://fb.com/MITUSkillologies
https://twitter.com/mitu_group
https://www.linkedin.com/company/mitu-skillologies/
https://youtube.com/MITUSkillologies
https://github.com/mituskillologies/
https://www.kaggle.com/mituskillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

