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Object Recognition

• Object recognition in image processing refers to 
the task of identifying and classifying objects within 
digital images or video frames. 

• It involves the use of computer vision techniques 
and machine learning algorithms to automatically 
detect and recognize objects of interest in visual 
data.



Object Recognition

• The goal of object recognition is to assign 
meaningful labels or categories to objects in an 
image. 

• This can involve identifying common objects such as 
cars, people, animals, or specific object instances 
such as a particular breed of dog or a specific model 
of car.



Object Recognition

• Object recognition typically involves several steps, 
including:
– Preprocessing: This step involves preparing the image 

data for analysis by performing operations such as 
resizing, normalizing, or enhancing the image.

– Feature Extraction: Features that represent 
discriminative characteristics of objects are extracted 
from the preprocessed image. These features can be 
low-level visual descriptors like edges, corners, or 
textures, or higher-level features learned from deep 
neural networks.



Object Recognition

• Classification or Detection: The extracted features are 
used to classify the objects or detect their presence in 
the image. Classification involves assigning a specific 
label or category to an entire image, while detection 
involves localizing and classifying objects within an 
image.

• Post-processing: After classification or detection, post-
processing techniques are applied to refine the results, 
such as filtering out false positives, grouping 
detections, or estimating object poses and attributes.



Image Processing

• As such, we can distinguish between these three 
computer vision tasks:
– Image Classification: Predict the type or class of an 

object in an image.
• Input: An image with a single object, such as a 

photograph.
• Output: A class label (e.g. one or more integers 

that are mapped to class labels).



Image Processing

• Object Localization: Locate the presence of objects in 
an image and indicate their location with a bounding 
box.
– Input: An image with one or more objects, such as a 

photograph.
– Output: One or more bounding boxes (e.g. defined 

by a point, width, and height).



Image Processing

• Object Detection: Locate the presence of objects with a 
bounding box and types or classes of the located 
objects in an image.
– Input: An image with one or more objects, such as a 

photograph.
– Output: One or more bounding boxes (e.g. defined 

by a point, width, and height), and a class label for 
each bounding box.



Image Processing



Image Processing



The RCNN Model Family

• The R-CNN family of methods refers to the R-CNN, 
which may stand for “Regions with CNN Features” or 
“Region-Based Convolutional Neural Network,” 
developed by Ross Girshick, et al.

• This includes the techniques R-CNN, Fast R-CNN, and 
Faster-RCNN designed and demonstrated for object 
localization and object recognition.



The RCNN

• The R-CNN was described in the 2014 paper by Ross 
Girshick, et al. from UC Berkeley titled “Rich feature 
hierarchies for accurate object detection and semantic 
segmentation.”

• It may have been one of the first large and successful 
application of convolutional neural networks to the 
problem of object localization, detection, and 
segmentation. 

• The approach was demonstrated on benchmark datasets, 
achieving then state-of-the-art results on the VOC-2012 
dataset and the 200-class ILSVRC-2013 object detection 
dataset.



The RCNN

• Proposed R-CNN model is comprised of three modules; 
they are:
– Module 1: Region Proposal. Generate and extract 

category independent region proposals, e.g. 
candidate bounding boxes.

– Module 2: Feature Extractor. Extract feature from 
each candidate region, e.g. using a deep 
convolutional neural network.

– Module 3: Classifier. Classify features as one of the 
known class, e.g. linear SVM classifier model.



The RCNN



RCNN

• A computer vision technique is used to propose 
candidate regions or bounding boxes of potential objects 
in the image called “selective search,” although the 
flexibility of the design allows other region proposal 
algorithms to be used.

• The feature extractor used by the model was the 
AlexNet deep CNN that won the ILSVRC-2012 image 
classification competition. 

• The output of the CNN was a 4,096 element vector that 
describes the contents of the image that is fed to a linear 
SVM for classification, specifically one SVM is trained for 
each known class.



Fast-RCNN

• Given the great success of R-CNN, Ross Girshick, then at 
Microsoft Research, proposed an extension to address the 
speed issues of R-CNN in a 2015 paper titled “Fast R-CNN.”

• The paper opens with a review of the limitations of R-CNN, 
which can be summarized as follows:
– Training is a multi-stage pipeline. Involves the 

preparation and operation of three separate models.
– Training is expensive in space and time. Training a deep 

CNN on so many region proposals per image is very slow.
– Object detection is slow. Make predictions using a deep 

CNN on so many region proposals is very slow.



Fast-RCNN

• A prior work was proposed to speed up the technique 
called spatial pyramid pooling networks, or SPPnets, in 
the 2014 paper “Spatial Pyramid Pooling in Deep 
Convolutional Networks for Visual Recognition.” 

• This did speed up the extraction of features, but 
essentially used a type of forward pass caching 
algorithm.

• Fast R-CNN is proposed as a single model instead of a 
pipeline to learn and output regions and classifications 
directly.



Fast-RCNN

• The architecture of the model takes the photograph a 
set of region proposals as input that are passed through 
a deep convolutional neural network. 

• A pre-trained CNN, such as a VGG-16, is used for feature 
extraction. 

• The end of the deep CNN is a custom layer called a 
Region of Interest Pooling Layer, or RoI Pooling, that 
extracts features specific for a given input candidate 
region.



Fast-RCNN

• The output of the CNN is then interpreted by a fully 
connected layer then the model bifurcates into two 
outputs, one for the class prediction via a softmax layer, 
and another with a linear output for the bounding box. 

• This process is then repeated multiple times for each 
region of interest in a given image.



Fast-RCNN



Faster-RCNN

• The model architecture was further improved for both 
speed of training and detection by Shaoqing Ren, et al. 
at Microsoft Research in the 2016 paper titled “Faster R-
CNN: Towards Real-Time Object Detection with Region 
Proposal Networks.”

• The architecture was the basis for the first-place results 
achieved on both the ILSVRC-2015 and MS COCO-2015 
object recognition and detection competition tasks.



Faster-RCNN

• The architecture was designed to both propose and 
refine region proposals as part of the training process, 
referred to as a Region Proposal Network, or RPN. 

• These regions are then used in concert with a Fast R-
CNN model in a single model design. 

• These improvements both reduce the number of region 
proposals and accelerate the test-time operation of the 
model to near real-time with then state-of-the-art 
performance.



Faster-RCNN

• Although it is a single unified model, the architecture is 
comprised of two modules:
– Module 1: Region Proposal Network. Convolutional 

neural network for proposing regions and the type of 
object to consider in the region.

– Module 2: Fast R-CNN. Convolutional neural network 
for extracting features from the proposed regions 
and outputting the bounding box and class labels.



Faster-RCNN

• Both modules operate on the same output of a 
deep CNN. 

• The region proposal network acts as an attention 
mechanism for the Fast R-CNN network, informing 
the second network of where to look or pay 
attention.



Faster-RCNN



Faster-RCNN

• The RPN works by taking the output of a pre-trained 
deep CNN, such as VGG-16, and passing a small 
network over the feature map and outputting 
multiple region proposals and a class prediction for 
each. 

• Region proposals are bounding boxes, based on so-
called anchor boxes or pre-defined shapes designed 
to accelerate and improve the proposal of regions. 

• The class prediction is binary, indicating the 
presence of an object, or not, so-called “objectness” 
of the proposed region.



Faster-RCNN

• A procedure of alternating training is used where both sub-
networks are trained at the same time, although 
interleaved. 

• This allows the parameters in the feature detector deep 
CNN to be tailored or fine-tuned for both tasks at the same 
time.

• At the time of writing, this Faster R-CNN architecture is the 
pinnacle of the family of models and continues to achieve 
near state-of-the-art results on object recognition tasks. 

• A further extension adds support for image segmentation, 
described in the paper 2017 paper “Mask R-CNN.”



Image Segmentation

• This technique gives us a far more granular 
understanding of the object(s) in the image. 

• The image shown below will help you to 
understand what image segmentation is:



Image Segmentation

• All 5 objects in the left image are people. Hence, 
semantic segmentation will classify all the people as a 
single instance. 

• Now, the image on the right also has 5 objects (all of 
them are people). But here, different objects of the 
same class have been assigned as different instances. 
This is an example of instance segmentation.



Mask RCNN

• Mask R-CNN is basically an extension of Faster R-
CNN. Faster R-CNN is widely used for object 
detection tasks. 

• For a given image, it returns the class label and 
bounding box coordinates for each object in the 
image. So, let’s say you pass the following image:



Mask RCNN

• Let’s first quickly understand how Faster R-CNN works. This 
will help us grasp the intuition behind Mask R-CNN as well.
– Faster R-CNN first uses a ConvNet to extract feature maps 

from the images
– These feature maps are then passed through a Region 

Proposal Network (RPN) which returns the candidate 
bounding boxes

– We then apply an RoI pooling layer on these candidate 
bounding boxes to bring all the candidates to the same size

– And finally, the proposals are passed to a fully connected 
layer to classify and output the bounding boxes for objects



Mask RCNN

• Backbone Model
– Similar to the ConvNet that we use in Faster R-

CNN to extract feature maps from the image, we 
use the ResNet 101 architecture to extract 
features from the images in Mask R-CNN. 

– So, the first step is to take an image and extract 
features using the ResNet 101 architecture. 
These features act as an input for the next layer.



Mask RCNN

• Region Proposal Network (RPN)
– Now, we take the feature maps obtained in the 

previous step and apply a region proposal 
network (RPN). 

– This basically predicts if an object is present in 
that region (or not). 

– In this step, we get those regions or feature 
maps which the model predicts contain some 
object.



Mask RCNN: Region of Interest

• The regions obtained from the RPN might be of 
different shapes. Hence, we apply a pooling layer and 
convert all the regions to the same shape. 

• Next, these regions are passed through a fully 
connected network so that the class label and 
bounding boxes are predicted.

• Till this point, the steps are almost similar to how 
Faster R-CNN works. 

• Now comes the difference between the two 
frameworks. In addition to this, Mask R-CNN also 
generates the segmentation mask.



Mask RCNN: Region of Interest

• For that, we first compute the region of interest so 
that the computation time can be reduced. 

• For all the predicted regions, we compute the 
Intersection over Union (IoU) with the ground truth 
boxes. We can computer IoU like this:

IoU = Area of the intersection / Area of the union

• Now, only if the IoU is greater than or equal to 0.5, we 
consider that as a region of interest. Otherwise, we 
neglect that particular region. 

• We do this for all the regions and then select only a set 
of regions for which the IoU is greater than 0.5.



Mask RCNN: Region of Interest

Here, the IoU of Box 1 and Box 2 
is possibly less than 0.5, whereas 
the IoU of Box 3 and Box 4 is 
approximately greater than 0.5. 
Hence. we can say that Box 3 
and Box 4 are the region of 
interest for this particular image 
whereas Box 1 and Box 2 will be 
neglected.



Mask RCNN: Segmentation

• Once we have the RoIs based on the IoU values, we 
can add a mask branch to the existing architecture. 

• This returns the segmentation mask for each region 
that contains an object. 

• It returns a mask of size 28 X 28 for each region 
which is then scaled up for inference.



Mask RCNN: Segmentation



COCO Dataset

• COCO is a large-scale object detection, segmentation, and 
captioning dataset. COCO has several features:
– Object segmentation
– Recognition in context
– Superpixel stuff segmentation
– 330K images (>200K labeled)
– 1.5 million object instances
– 80 object categories
– 91 stuff categories
– 5 captions per image
– 250,000 people with keypoints



Mask RCNN: Segmentation

• Here, our model has segmented all the objects in the 
image. This is the final step in Mask R-CNN where we 
predict the masks for all the objects in the image.

• Keep in mind that the training time for Mask R-CNN is 
quite high. It took me somewhere around 1 to 2 days 
to train the Mask R-CNN on the famous COCO dataset. 

• We will instead use the pretrained weights of the 
Mask R-CNN model trained on the COCO dataset. 

• Now, before we dive into the Python code, let’s look 
at the steps to use the Mask R-CNN model to perform 
instance segmentation.



Mask RCNN: Implementation

• Step 1: Clone the repository
– First, we will clone the mask rcnn repository 

which has the architecture for Mask R-CNN. Use 
the following command to clone the repository:
git clone https://github.com/matterport/Mask_RCNN.git

• Once this is done, we need to install the 
dependencies required by Mask R-CNN.



Mask RCNN: Implementation

• Step 2: Install the dependencies

• Here is a list of all the dependencies for Mask R-
CNN:

    numpy    scipy

    pillow    cython

    matplotlib     scikit-image

    tensorflow>=1.3.0   keras>=2.0.8

    opencv-python    h5py

    imgaug    IPython



Mask RCNN: Implementation

• Step 3: Download the pre-trained weights (trained on 
MS COCO)

• Next, we need to download the pretrained weights. You 
can use this link to download the pre-trained weights. 

• These weights are obtained from a model that was 
trained on the MS COCO dataset. 

• Once you have downloaded the weights, paste this file 
in the samples folder of the Mask_RCNN repository that 
we cloned in step 1.



Mask RCNN: Implementation

• Step 4: Predicting for our image

• Finally, we will use the Mask R-CNN architecture 
and the pretrained weights to generate predictions 
for our own images.

• Once you’re done with these four steps, it’s time to 
jump into your Jupyter Notebook! 

• We will implement all these things in Python and 
then generate the masks along with the classes and 
bounding boxes for objects in our images.



YOLO Models

• Another popular family of object recognition 
models is referred to collectively as YOLO or “You 
Only Look Once,” developed by Joseph Redmon, et 
al.

• The R-CNN models may be generally more accurate, 
yet the YOLO family of models are fast, much faster 
than R-CNN, achieving object detection in real-time.



YOLO Models

• The YOLO model was first described by Joseph Redmon, et al. 
in the 2015 paper titled “You Only Look Once: Unified, Real-Time 
Object Detection.” 

• Note that Ross Girshick, developer of R-CNN, was also an author 
and contributor to this work, then at Facebook AI Research.

• The approach involves a single neural network trained end to 
end that takes a photograph as input and predicts bounding 
boxes and class labels for each bounding box directly. 

• The technique offers lower predictive accuracy (e.g. more 
localization errors), although operates at 45 frames per second 
and up to 155 frames per second for a speed-optimized version 
of the model.



YOLO Models

• The model works by first splitting the input image 
into a grid of cells, where each cell is responsible 
for predicting a bounding box if the center of a 
bounding box falls within the cell. 

• Each grid cell predicts a bounding box involving the 
x, y coordinate and the width and height and the 
confidence. A class prediction is also based on each 
cell.



YOLO Models

• For example, an image may be divided into a 7×7 
grid and each cell in the grid may predict 2 
bounding boxes, resulting in 94 proposed bounding 
box predictions. 

• The class probabilities map and the bounding boxes 
with confidences are then combined into a final set 
of bounding boxes and class labels. 

• The image taken from the paper below summarizes 
the two outputs of the model.



YOLO Models



YOLO: Step by Step

• 1. Divide the image into a grid of cells. 
– The YOLO algorithm divides the image into a 

grid of cells, typically 7x7 or 13x13. 
– Each cell is responsible for predicting a set of 

bounding boxes and class probabilities.



YOLO: Step by Step

• 2. Predict bounding boxes and class probabilities for 
each cell. 
– For each cell, the YOLO algorithm predicts a set 

of bounding boxes and class probabilities. 
– The bounding boxes are represented as four 

coordinates: the top left corner, the bottom right 
corner, and the width and height of the box. 

– The class probabilities represent the probability 
that the object in the box belongs to a particular 
class.



YOLO: Step by Step

• 3. Apply non-max suppression. 
– The bounding boxes predicted by the YOLO 

algorithm may overlap. 
– To remove overlapping boxes, the YOLO 

algorithm applies a non-max suppression 
algorithm. 

– This algorithm keeps the box with the highest 
confidence score, and it removes all other boxes 
that have a high overlap with the selected box.



YOLO: Step by Step

• 4. Draw the bounding boxes and class labels on the 
image. 
– The final step is to draw the bounding boxes and 

class labels on the image. 
– The bounding boxes are drawn in a different 

color for each class, and the class labels are 
displayed next to the bounding boxes.



YOLO: Summary

• Divide the image into a grid of cells.

• Predict bounding boxes and class probabilities for 
each cell.

• Apply non-max suppression.

• Draw the bounding boxes and class labels on the 
image.



YOLOv2 (YOLO9000) and YOLOv3

• The model was updated by Joseph Redmon and Ali 
Farhadi in an effort to further improve model 
performance in their 2016 paper titled “YOLO9000: 
Better, Faster, Stronger.”

• Although this variation of the model is referred to 
as YOLO v2, an instance of the model is described 
that was trained on two object recognition datasets 
in parallel, capable of predicting 9,000 object 
classes, hence given the name “YOLO9000.”



YOLOv2 (YOLO9000) and YOLOv3

• A number of training and architectural changes 
were made to the model, such as the use of batch 
normalization and high-resolution input images.

• Like Faster R-CNN, YOLOv2 model makes use of 
anchor boxes, pre-defined bounding boxes with 
useful shapes and sizes that are tailored during 
training. 

• The choice of bounding boxes for the image is pre-
processed using a k-means analysis on the training 
dataset.



YOLOv2 (YOLO9000) and YOLOv3

• Importantly, the predicted representation of the 
bounding boxes is changed to allow small changes 
to have a less dramatic effect on the predictions, 
resulting in a more stable model. 

• Rather than predicting position and size directly, 
offsets are predicted for moving and reshaping the 
pre-defined anchor boxes relative to a grid cell and 
dampened by a logistic function.



YOLOv2 (YOLO9000) and YOLOv3



Applications of Computer Vision

• Gender Prediction

• Image Mapping

• Face / Object Recognition

• Image Recreation

• Image Matching
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      Thank you
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