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First Python program

• Let us execute programs in different modes of 
programming.

• Interactive Mode Programming:
– Invoking the interpreter without passing a script file as a 

parameter brings up the following prompt:



Script Mode Programming

• Invoking the interpreter with a script parameter 
begins execution of the script and continues until 
the script is finished. When the script is finished, 
the interpreter is no longer active.

• Let us write a simple Python program in a script. 
Python files have the extension .py. Type the 
following source code in a test.py file-

print ("Hello, Python!")
• Now, try to run this program as follows-

$ python test.py



Script Mode Programming

• Let us try another way to execute a Python 
script in Linux. Here is the modified test.py file-
#!/usr/bin/python3

print ("Hello, Python!")
• We assume that you have Python interpreter 

available in the /usr/bin directory. Now, try to 
run this program as follows-
$ chmod +x test.py # This is to make file executable

$./test.py



Python Identifiers

• A Python identifier is a name used to identify a 
variable, function, class, module or other object. 

• An identifier starts with a letter A to Z or a to z or 
an underscore (_) followed by zero or more 
letters, underscores and digits (0 to 9).

• Python does not allow punctuation characters 
such as @, $, and % within identifiers.

• Python is a case sensitive programming 
language. Thus, College and college are two 
different identifiers in Python.



Python Identifiers – Naming Conventions

• Class names start with an uppercase letter. All 
other identifiers start with a lowercase letter.

• Starting an identifier with a single leading 
underscore indicates that the identifier is private.

• Starting an identifier with two leading 
underscores indicates a strong private identifier.

• If the identifier also ends with two trailing 
underscores, the identifier is a language-defined 
special name.



Keywords

• Keywords are the reserved words in Python.
• We cannot use a keyword as a variable name, 

function name or any other identifier. They 
are used to define the syntax and structure 
of the Python language.

• In Python, keywords are case sensitive.
– All the keywords except True, False and None are 

in lowercase and they must be written as it is.

• There are 33 keywords in Python 3.7



Python keywords

• False class finally is return

• None continue for lambda try

• True def from nonlocal while

• and del global not with

• as elif if or yield

• assert else import pass  

• break except in raise



Declaring and using variables

>>> num1 = 45

>>> num2 = 56

>>> print(num1)

45

>>> num3 = 12.33

>>> print(num3)

12.33

>>> name = 'Tushar'

>>> print(name)

Tushar



Data types

• Numbers:
– int
– float
– complex

• String
• Boolean

• List
• Tuple
• Set
• Dictionary



Integers

>>> num = 23

>>> type(num)

<class 'int'>

>>> num + 10

33

>>> num ** 100

148861915063630393937915565865597542319
871196538013686865769882092224332785393
313521523901432773468042334765921794473
10859520222529876001

•



Integer length

• Try this:

>>> num ** 1000

• This  will generate a big number with 100s of 
digits.

• There is NO inherent limit to the integer to 
store in memory. It goes on using until we run 
out of memory. 



Floating point numbers

>>> num = 59.33

>>> print(num)

59.33

>>> num = 5933e18

>>> print(num)

5.933e+21

>>> type(num)

<class 'float'>

>>> num = 12.9567255478

>>> num * 11.43

148.09537301135398



Floating point numbers

>>> num1 = 4.233e221

>>> num2 = 12.322E212

>>> num1 * num

inf

>>> 2.0 ** 1023

8.98846567431158e+307

>>> 2.1 ** 1023

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

  OverflowError: (34, 'Numerical result out of 
range')

Floating point limit



Other number systems

• Octal number system

>>> num = 0o123

>>> print(num)

83

• Hexadecimal number system

>>> num = 0x123

>>> print(num)

291

• Binary Number system

>>> num = 0b101

>>> print(num)

5



Multiple assignment 

>>> num1, num2, num3 = 12, 34, 55

>>> print(num1)

12

>>> print(num2)

34

>>> print(num3)

55



Multiple assignment 

>>> num1 = num2 = num3 = 27

>>> print(num1)

27

>>> print(num2)

27

>>> print(num3)

27



Semicolon separator

>>> num1 = 12; num2 = 34; num3 = 31

>>> print(num2)

34

>>> num1 = 10; num1 = num1 + 2; print(num1)

12



Strings 

• Strings can be declared in single or double quotes.

>>> name = 'Hello World'

>>> print(name)

Hello World

>>> name = "Hello World"

>>> print(name)

Hello World

>>> type(name)

<class 'str'>



Making combinations 

>>> data = 'Learning "Python" is fun'

>>> print(data)

Learning "Python" is fun

>>> data = "Learning 'Python' is fun"

>>> print(data)

Learning 'Python' is fun



String concatenation

>>> first = 'Python'

>>> second = 'Programming'

>>> last = first + second

>>> print(last)

PythonProgramming

>>> print(first+second)

PythonProgramming

>>> print('Python'+'Programming')

PythonProgramming
•



Escape Sequences

\n New Line

\t Tab

\v Vertical tab

\r Carriage Return

\b Backspace

\a Audio bell

\\ Single slash



Using escape sequences

>>> print('Hello\nWorld')

Hello

World

>>> print('Hello\bWorld')

HellWorld

>>> print('Hello\vWorld')

Hello

     World

>>> print('Hello\rWorld')

World

>>> print('Hello\\World')

Hello\World



Comment 

• Python Syntax ‘Comments’ let you store tags at the 
right places in the code. 

• You can use them to explain complex sections of 
code. The interpreter ignores comments. 

• Declare a comment using an octothorpe / hash (#).

# This is a comment

>>> num = 34    #Variable declared

• Python does not support general multiline 
comments like Java or C++.



Docstring 

• A docstring is a documentation string. Like a 
comment, this Python Syntax is used to explain 
code. 

• But unlike comments, they are more specific. Also, 
they are retained at runtime. 

• This way, the programmer can inspect them at 
runtime. Delimit a docstring using three double or 
single quotes.



Multi-line string

>>> line = '''Hello

... Welcome to MITU

... Pune'''

>>> print(line)

Hello

Welcome to MITU

Pune



Multi-line comment



Common string functions

• title()

• upper()

• lower()

• swapcase()

• isalpha()

• isdigit()

• islower()

• isupper()

• istitle()

• split()

• strip()

• lstrip()

• rstrip()

• find()

• startswith()

• endswith()

• replace()



Using string functions

>>> data = 'hello'

>>> data.upper()

'HELLO'

>>> data.isalpha()

True

>>> data.split()

['hello']

>>> data.startswith('he')

True

>>> data.replace('e','a')

'hallo'



The Unicode strings

>>> s = u'\u0937'

>>> print(s)

ष

>>> s = u'\u0567'

>>> print(s)

Է

s = u'\u0756'

>>> print(s)

ݖ



The dir( ) function 

• The dir() function returns all properties and methods 
of the specified object, without the values.

• This function will return all the properties and 
methods, even built-in properties which are default 
for all object.

• If the object has __dir__() method, the method will be 
called and must return the list of attributes.

• If the object doesn't have __dir__() method, this 
method tries to find information from the __dict__ 
attribute (if defined), and from type object. In this 
case, the list returned from dir() may not be complete.



Using dir and help

• How to use dir( ) ?

– >>> data = ‘hello’

– >>> dir(data)

• How to see the help of functions ?

– >>> help(data.upper)# Object function

– >>> help(len)  # basic function

• You can apply the dir() and help() function to all 
kind of variables and objects.



The print function

• The print() function prints the given object to the 
standard output device (screen) or to the text 
stream file.

• The full syntax of print() is:

– print(*objects, sep=' ', end='\n')
• objects - object to the printed. * indicates that 

there may be more than one object
• sep - objects are separated by sep. Default 

value: ' '
• end - end is printed at last



Using print( )

>>> name = 'Tushar'

>>> age = 34

>>> print('My name is',name,'and age is',age)

My name is Tushar and age is 34

>>> print('My name is %s and age is %d' %
(name,age))   # Formatted print

My name is Tushar and age is 34

>>> print('My name is {} and age is 
{}' .format(name,age))  #Using .format

My name is Tushar and age is 34



Print options

>>> print('My name is',name)

My name is Tushar

>>> print('My name is',name,end='\n\n')

My name is Tushar

>>> print(name,age)

Tushar 34

>>> print(name,age,sep='\t')

Tushar 34

>>> print(name,age,sep='\n')

Tushar

34



The format( )

• The string format() method formats the given 
string into a nicer output in Python.

• The syntax of format() method is:
– template.format(p0, p1, ..., k0=v0, k1=v1, ...)

• Here, p0, p1,... are positional arguments and, k0, 
k1,... are keyword arguments with values v0, v1,... 
respectively.

• And, template is a mixture of format codes with 
placeholders for the arguments.



The format( ) parameters

• String format() Parameters

– format() method takes any number of 
parameters. But, is divided into two types of 
parameters:

– Positional parameters - list of parameters that 
can be accessed with index of parameter inside 
curly braces {index}

– Keyword parameters - list of parameters of type 
key=value, that can be accessed with key of 
parameter inside curly braces {key}



Positional arguments



Keyword arguments



Using format( )

name = 'Tushar'

age = 34

• # default arguments

print("Hello { }, your age is { }.".format(name,age))

• # positional arguments

print("Hello {0}, your age is {1}.".format(name,age))

• # keyword arguments

print("Hello {x}, your age is {y}.".format(x=name, y=age))

• # mixed arguments

print("Hello {0}, your age is {y}.".format(name, y=age))



Format specifiers

• %s – String (or any object with a string 
representation, like numbers)

• %d – Integers 

• %f – Floating point numbers

• %.<number of digits>f – Floating point numbers 
with a fixed amount of digits to the right of the dot.

• %x/%X – Integers in hex representation (lowercase/
uppercase)

• %o – Integers in octal representation



Operators 



Arithmetic Operators



Arithmetic operators

>>> num1 = 23; num2 = 11

>>> result = num1 + num2

>>> result

34

>>> num1 - num2

12

>>> num1 * num2

253

>>> num1 / num2

2.090909090909091

>>> num1 // num2

2

>>> num1 % num2

1



Arithmetic operators on strings

• The multiplication operator can be used on strings 
too.

>>> name = 'Tushar'

>>> name * 5

'TusharTusharTusharTusharTushar'



Relational operators



Relational operators

>>> num1 > num2

True

>>> num1 <= num2

False

>>> num1 == num2

False

>>> num1 != num2

True



Relational operators on strings

>>> 'Abc' != 'AbC'

True

>>> 'Abc' == 'AbC'

False

>>> 'Abc' < 'AbC'

False

>>> 'Abc' < 'AbCdef'

False



Assignment operators



Assignment operators

>>> print(num1)

25

>>> num1 += 2

>>> print(num1)

27

>>> num1 *= 2

>>> print(num1)

54

>>> num1 /= 2

>>> print(num1)

27.0



Logical operators



Logical operators

>>> num1 > num2 and num1 < 100

True

>>> num1 > 100 or num1 == num2

False

>>> not num1 < 100

False



Membership operators

• These operators test whether a value is a member 
of a sequence. The sequence may be a list, a string, 
or a tuple. We have two membership python 
operators- ‘in’ and ‘not in’.

– in
• This checks if a value is a member of a 

sequence.

– not in
• Unlike ‘in’, ‘not in’ checks if a value is not a 

member of a sequence.



Membership operators

>>> x = 10

>>> x in [34,10,32,17]

True

>>> 15 in [34,10,32,17]

False

>>> 15 not in [34,10,32,17]

True

>>> 'kar' in 'Tendulkar'

True



Identity operators

• These operators test if the two operands share an 
identity. We have two identity operators- ‘is’ and ‘is 
not’.

– is
• If two operands have the same identity, it 

returns True.

– is not
• If two operands have the different identity, it 

returns True.



Identity operators

>>> 2 is 2

True

>>> 2 is '2'

False

>>> 20 is 20.0

False

>>> 20 is not 20.0

True

>>> 2000.0 is 2e3

True



Bitwise operators



Bitwise operators

>>> x = 19; y = 34

>>> x & y

2

>>> x | y

51

>>> x ^ y

49

>>> y << 2

136

>>> ~x

-20



Operators Precedence



Two more types

• Complex

>>> num = 2.3 + 4.5j

>>> print(num)
(2.3+4.5j)

>>> type(num)
<class 'complex'>

• Boolean

>>> num = True
>>> print(num)

True

>>> type(num)
<class 'bool'>



Special type: None

• The null keyword is commonly used in many programming 
languages, such as Java, C++, C# and Javascript. It is a value 
that is assigned to a variable.

• The equivalent of the null keyword in Python is None. It was 
designed this way for two reasons:

– Many would argue that the word "null" is somewhat 
esoteric. It's not exactly the most friendliest word to 
programming novices. Also, "None" refers exactly to the 
intended functionality - it is nothing, and has no behavior

– In most object-oriented languages, the naming of objects 
tend to use camel-case syntax. eg. ThisIsMyObject. As you'll 
see soon, Python's None type is an object, and behaves as 
one.



Basic use

>>> num = None

>>> print(num)

None

>>> num

>>> type(num)

<class 'NoneType'>



Type conversion

• The process of converting the value of one data 
type (integer, string, float, etc.) to another data 
type is called type conversion. Python has two 
types of type conversion.

– Implicit Type Conversion

– Explicit Type Conversion

• Implicit Type Conversion:

– In Implicit type conversion, Python automatically 
converts one data type to another data type. 
This process doesn't need any user involvement.



Type conversion

>>> num1 = 45 #int

>>> num2 = 56.23 #float

>>> result = num1 + num2

>>> print(result) #float

101.22999999999999



Explicit type conversion

• In Explicit Type Conversion, users convert the data 
type of an object to required data type. We use the 
predefined functions like int(), float(), str(), etc to 
perform explicit type conversion.

• This type conversion is also called typecasting because 
the user casts (change) the data type of the objects.

• Syntax :

(required_datatype)(expression)

• Typecasting can be done by assigning the required 
data type function to the expression.



Explicit type conversion

>>> num1 = 45

>>> num2 = 56.23

>>> result = num1 + int(num2)

>>> print(result)

101



Type casting on strings

>>> num = '178'

>>> num * 3

'178178178'

>>> int(num) * 3

534

>>> num = 123

>>> s = 'hello' + str(num)

>>> s

'hello123'



Compatibility code

• Many interpreter based languages are having 
similar kind of syntax. Check the below code. We 
can run this code by three different kinds of 
interpreters i.e. Python, R and Ruby.



Output 



Taking user input

• The input( ) function is used to read the values from 
keyboard. It prints the string and reads a string 
from keyboard which then will be stored in a 
variable.

• Example:

– s = input(‘Enter your name:’)

– num = int(input(‘Enter a number:’))

– marks = float(input(‘Enter marks:’))



Sample code:



Exercises 

• Write a program to read Celsius temperature and 
print equivalent Fahrenheit temperate on screen.

• Read radius of the circle from user and find the 
area and perimeter of it.

• Read the amount and percentage of interest from 
the keyboard and find final amount after adding 
interest in original amount.

• Write a program to read distance value in meters 
and convert it into centimeters, inches, and yards.



tushar@tusharkute.com

      Thank you

This presentation is created using LibreOffice Impress 5.1.6.2, can be used freely as per GNU General Public License

Web Resources
http://mitu.co.in 

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies c/MITUSkillologies
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