
Python : Getting Started

Tushar B. Kute,
http://tusharkute.com

First Python program

• Let us execute programs in different modes of
programming.

• Interactive Mode Programming:
– Invoking the interpreter without passing a script file as a

parameter brings up the following prompt:

Script Mode Programming

• Invoking the interpreter with a script parameter
begins execution of the script and continues until
the script is finished. When the script is finished,
the interpreter is no longer active.

• Let us write a simple Python program in a script.
Python files have the extension .py. Type the
following source code in a test.py file-

print ("Hello, Python!")
• Now, try to run this program as follows-

$ python test.py

Script Mode Programming

• Let us try another way to execute a Python
script in Linux. Here is the modified test.py file-
#!/usr/bin/python3

print ("Hello, Python!")
• We assume that you have Python interpreter

available in the /usr/bin directory. Now, try to
run this program as follows-
$ chmod +x test.py # This is to make file executable

$./test.py

Python Identifiers

• A Python identifier is a name used to identify a
variable, function, class, module or other object.

• An identifier starts with a letter A to Z or a to z or
an underscore (_) followed by zero or more
letters, underscores and digits (0 to 9).

• Python does not allow punctuation characters
such as @, $, and % within identifiers.

• Python is a case sensitive programming
language. Thus, College and college are two
different identifiers in Python.

Python Identifiers – Naming Conventions

• Class names start with an uppercase letter. All
other identifiers start with a lowercase letter.

• Starting an identifier with a single leading
underscore indicates that the identifier is private.

• Starting an identifier with two leading
underscores indicates a strong private identifier.

• If the identifier also ends with two trailing
underscores, the identifier is a language-defined
special name.

Keywords

• Keywords are the reserved words in Python.
• We cannot use a keyword as a variable name,

function name or any other identifier. They
are used to define the syntax and structure
of the Python language.

• In Python, keywords are case sensitive.
– All the keywords except True, False and None are

in lowercase and they must be written as it is.

• There are 33 keywords in Python 3.7

Python keywords

• False class finally is return

• None continue for lambda try

• True def from nonlocal while

• and del global not with

• as elif if or yield

• assert else import pass

• break except in raise

Declaring and using variables

>>> num1 = 45

>>> num2 = 56

>>> print(num1)

45

>>> num3 = 12.33

>>> print(num3)

12.33

>>> name = 'Tushar'

>>> print(name)

Tushar

Data types

• Numbers:
– int
– float
– complex

• String
• Boolean

• List
• Tuple
• Set
• Dictionary

Integers

>>> num = 23

>>> type(num)

<class 'int'>

>>> num + 10

33

>>> num ** 100

148861915063630393937915565865597542319
871196538013686865769882092224332785393
313521523901432773468042334765921794473
10859520222529876001

•

Integer length

• Try this:

>>> num ** 1000

• This will generate a big number with 100s of
digits.

• There is NO inherent limit to the integer to
store in memory. It goes on using until we run
out of memory.

Floating point numbers

>>> num = 59.33

>>> print(num)

59.33

>>> num = 5933e18

>>> print(num)

5.933e+21

>>> type(num)

<class 'float'>

>>> num = 12.9567255478

>>> num * 11.43

148.09537301135398

Floating point numbers

>>> num1 = 4.233e221

>>> num2 = 12.322E212

>>> num1 * num

inf

>>> 2.0 ** 1023

8.98846567431158e+307

>>> 2.1 ** 1023

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 OverflowError: (34, 'Numerical result out of
range')

Floating point limit

Other number systems

• Octal number system

>>> num = 0o123

>>> print(num)

83

• Hexadecimal number system

>>> num = 0x123

>>> print(num)

291

• Binary Number system

>>> num = 0b101

>>> print(num)

5

Multiple assignment

>>> num1, num2, num3 = 12, 34, 55

>>> print(num1)

12

>>> print(num2)

34

>>> print(num3)

55

Multiple assignment

>>> num1 = num2 = num3 = 27

>>> print(num1)

27

>>> print(num2)

27

>>> print(num3)

27

Semicolon separator

>>> num1 = 12; num2 = 34; num3 = 31

>>> print(num2)

34

>>> num1 = 10; num1 = num1 + 2; print(num1)

12

Strings

• Strings can be declared in single or double quotes.

>>> name = 'Hello World'

>>> print(name)

Hello World

>>> name = "Hello World"

>>> print(name)

Hello World

>>> type(name)

<class 'str'>

Making combinations

>>> data = 'Learning "Python" is fun'

>>> print(data)

Learning "Python" is fun

>>> data = "Learning 'Python' is fun"

>>> print(data)

Learning 'Python' is fun

String concatenation

>>> first = 'Python'

>>> second = 'Programming'

>>> last = first + second

>>> print(last)

PythonProgramming

>>> print(first+second)

PythonProgramming

>>> print('Python'+'Programming')

PythonProgramming
•

Escape Sequences

\n New Line

\t Tab

\v Vertical tab

\r Carriage Return

\b Backspace

\a Audio bell

\\ Single slash

Using escape sequences

>>> print('Hello\nWorld')

Hello

World

>>> print('Hello\bWorld')

HellWorld

>>> print('Hello\vWorld')

Hello

 World

>>> print('Hello\rWorld')

World

>>> print('Hello\\World')

Hello\World

Comment

• Python Syntax ‘Comments’ let you store tags at the
right places in the code.

• You can use them to explain complex sections of
code. The interpreter ignores comments.

• Declare a comment using an octothorpe / hash (#).

This is a comment

>>> num = 34 #Variable declared

• Python does not support general multiline
comments like Java or C++.

Docstring

• A docstring is a documentation string. Like a
comment, this Python Syntax is used to explain
code.

• But unlike comments, they are more specific. Also,
they are retained at runtime.

• This way, the programmer can inspect them at
runtime. Delimit a docstring using three double or
single quotes.

Multi-line string

>>> line = '''Hello

... Welcome to MITU

... Pune'''

>>> print(line)

Hello

Welcome to MITU

Pune

Multi-line comment

Common string functions

• title()

• upper()

• lower()

• swapcase()

• isalpha()

• isdigit()

• islower()

• isupper()

• istitle()

• split()

• strip()

• lstrip()

• rstrip()

• find()

• startswith()

• endswith()

• replace()

Using string functions

>>> data = 'hello'

>>> data.upper()

'HELLO'

>>> data.isalpha()

True

>>> data.split()

['hello']

>>> data.startswith('he')

True

>>> data.replace('e','a')

'hallo'

The Unicode strings

>>> s = u'\u0937'

>>> print(s)

ष

>>> s = u'\u0567'

>>> print(s)

Է

s = u'\u0756'

>>> print(s)

ݖ

The dir() function

• The dir() function returns all properties and methods
of the specified object, without the values.

• This function will return all the properties and
methods, even built-in properties which are default
for all object.

• If the object has __dir__() method, the method will be
called and must return the list of attributes.

• If the object doesn't have __dir__() method, this
method tries to find information from the __dict__
attribute (if defined), and from type object. In this
case, the list returned from dir() may not be complete.

Using dir and help

• How to use dir() ?

– >>> data = ‘hello’

– >>> dir(data)

• How to see the help of functions ?

– >>> help(data.upper)# Object function

– >>> help(len) # basic function

• You can apply the dir() and help() function to all
kind of variables and objects.

The print function

• The print() function prints the given object to the
standard output device (screen) or to the text
stream file.

• The full syntax of print() is:

– print(*objects, sep=' ', end='\n')
• objects - object to the printed. * indicates that

there may be more than one object
• sep - objects are separated by sep. Default

value: ' '
• end - end is printed at last

Using print()

>>> name = 'Tushar'

>>> age = 34

>>> print('My name is',name,'and age is',age)

My name is Tushar and age is 34

>>> print('My name is %s and age is %d' %
(name,age)) # Formatted print

My name is Tushar and age is 34

>>> print('My name is {} and age is
{}' .format(name,age)) #Using .format

My name is Tushar and age is 34

Print options

>>> print('My name is',name)

My name is Tushar

>>> print('My name is',name,end='\n\n')

My name is Tushar

>>> print(name,age)

Tushar 34

>>> print(name,age,sep='\t')

Tushar 34

>>> print(name,age,sep='\n')

Tushar

34

The format()

• The string format() method formats the given
string into a nicer output in Python.

• The syntax of format() method is:
– template.format(p0, p1, ..., k0=v0, k1=v1, ...)

• Here, p0, p1,... are positional arguments and, k0,
k1,... are keyword arguments with values v0, v1,...
respectively.

• And, template is a mixture of format codes with
placeholders for the arguments.

The format() parameters

• String format() Parameters

– format() method takes any number of
parameters. But, is divided into two types of
parameters:

– Positional parameters - list of parameters that
can be accessed with index of parameter inside
curly braces {index}

– Keyword parameters - list of parameters of type
key=value, that can be accessed with key of
parameter inside curly braces {key}

Positional arguments

Keyword arguments

Using format()

name = 'Tushar'

age = 34

• # default arguments

print("Hello { }, your age is { }.".format(name,age))

• # positional arguments

print("Hello {0}, your age is {1}.".format(name,age))

• # keyword arguments

print("Hello {x}, your age is {y}.".format(x=name, y=age))

• # mixed arguments

print("Hello {0}, your age is {y}.".format(name, y=age))

Format specifiers

• %s – String (or any object with a string
representation, like numbers)

• %d – Integers

• %f – Floating point numbers

• %.<number of digits>f – Floating point numbers
with a fixed amount of digits to the right of the dot.

• %x/%X – Integers in hex representation (lowercase/
uppercase)

• %o – Integers in octal representation

Operators

Arithmetic Operators

Arithmetic operators

>>> num1 = 23; num2 = 11

>>> result = num1 + num2

>>> result

34

>>> num1 - num2

12

>>> num1 * num2

253

>>> num1 / num2

2.090909090909091

>>> num1 // num2

2

>>> num1 % num2

1

Arithmetic operators on strings

• The multiplication operator can be used on strings
too.

>>> name = 'Tushar'

>>> name * 5

'TusharTusharTusharTusharTushar'

Relational operators

Relational operators

>>> num1 > num2

True

>>> num1 <= num2

False

>>> num1 == num2

False

>>> num1 != num2

True

Relational operators on strings

>>> 'Abc' != 'AbC'

True

>>> 'Abc' == 'AbC'

False

>>> 'Abc' < 'AbC'

False

>>> 'Abc' < 'AbCdef'

False

Assignment operators

Assignment operators

>>> print(num1)

25

>>> num1 += 2

>>> print(num1)

27

>>> num1 *= 2

>>> print(num1)

54

>>> num1 /= 2

>>> print(num1)

27.0

Logical operators

Logical operators

>>> num1 > num2 and num1 < 100

True

>>> num1 > 100 or num1 == num2

False

>>> not num1 < 100

False

Membership operators

• These operators test whether a value is a member
of a sequence. The sequence may be a list, a string,
or a tuple. We have two membership python
operators- ‘in’ and ‘not in’.

– in
• This checks if a value is a member of a

sequence.

– not in
• Unlike ‘in’, ‘not in’ checks if a value is not a

member of a sequence.

Membership operators

>>> x = 10

>>> x in [34,10,32,17]

True

>>> 15 in [34,10,32,17]

False

>>> 15 not in [34,10,32,17]

True

>>> 'kar' in 'Tendulkar'

True

Identity operators

• These operators test if the two operands share an
identity. We have two identity operators- ‘is’ and ‘is
not’.

– is
• If two operands have the same identity, it

returns True.

– is not
• If two operands have the different identity, it

returns True.

Identity operators

>>> 2 is 2

True

>>> 2 is '2'

False

>>> 20 is 20.0

False

>>> 20 is not 20.0

True

>>> 2000.0 is 2e3

True

Bitwise operators

Bitwise operators

>>> x = 19; y = 34

>>> x & y

2

>>> x | y

51

>>> x ^ y

49

>>> y << 2

136

>>> ~x

-20

Operators Precedence

Two more types

• Complex

>>> num = 2.3 + 4.5j

>>> print(num)
(2.3+4.5j)

>>> type(num)
<class 'complex'>

• Boolean

>>> num = True
>>> print(num)

True

>>> type(num)
<class 'bool'>

Special type: None

• The null keyword is commonly used in many programming
languages, such as Java, C++, C# and Javascript. It is a value
that is assigned to a variable.

• The equivalent of the null keyword in Python is None. It was
designed this way for two reasons:

– Many would argue that the word "null" is somewhat
esoteric. It's not exactly the most friendliest word to
programming novices. Also, "None" refers exactly to the
intended functionality - it is nothing, and has no behavior

– In most object-oriented languages, the naming of objects
tend to use camel-case syntax. eg. ThisIsMyObject. As you'll
see soon, Python's None type is an object, and behaves as
one.

Basic use

>>> num = None

>>> print(num)

None

>>> num

>>> type(num)

<class 'NoneType'>

Type conversion

• The process of converting the value of one data
type (integer, string, float, etc.) to another data
type is called type conversion. Python has two
types of type conversion.

– Implicit Type Conversion

– Explicit Type Conversion

• Implicit Type Conversion:

– In Implicit type conversion, Python automatically
converts one data type to another data type.
This process doesn't need any user involvement.

Type conversion

>>> num1 = 45 #int

>>> num2 = 56.23 #float

>>> result = num1 + num2

>>> print(result) #float

101.22999999999999

Explicit type conversion

• In Explicit Type Conversion, users convert the data
type of an object to required data type. We use the
predefined functions like int(), float(), str(), etc to
perform explicit type conversion.

• This type conversion is also called typecasting because
the user casts (change) the data type of the objects.

• Syntax :

(required_datatype)(expression)

• Typecasting can be done by assigning the required
data type function to the expression.

Explicit type conversion

>>> num1 = 45

>>> num2 = 56.23

>>> result = num1 + int(num2)

>>> print(result)

101

Type casting on strings

>>> num = '178'

>>> num * 3

'178178178'

>>> int(num) * 3

534

>>> num = 123

>>> s = 'hello' + str(num)

>>> s

'hello123'

Compatibility code

• Many interpreter based languages are having
similar kind of syntax. Check the below code. We
can run this code by three different kinds of
interpreters i.e. Python, R and Ruby.

Output

Taking user input

• The input() function is used to read the values from
keyboard. It prints the string and reads a string
from keyboard which then will be stored in a
variable.

• Example:

– s = input(‘Enter your name:’)

– num = int(input(‘Enter a number:’))

– marks = float(input(‘Enter marks:’))

Sample code:

Exercises

• Write a program to read Celsius temperature and
print equivalent Fahrenheit temperate on screen.

• Read radius of the circle from user and find the
area and perimeter of it.

• Read the amount and percentage of interest from
the keyboard and find final amount after adding
interest in original amount.

• Write a program to read distance value in meters
and convert it into centimeters, inches, and yards.

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 5.1.6.2, can be used freely as per GNU General Public License

Web Resources
http://mitu.co.in

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies c/MITUSkillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

