
Python : Data Structures

Tushar B. Kute,
http://tusharkute.com

Data Structures

Data Structures Separators

List []

Tuple ()

Set { }

Dictionary { : }

List

• List is a type of container in Data Structures, which
is used to store multiple data at the same time.

• Lists are just like the arrays, declared in other
languages.

• Lists need not be homogeneous always which
makes it a most powerful tool in Python.

• A single list may contain DataTypes like Integers,
Strings, as well as Objects.

• Lists are also very useful for implementing stacks
and queues. Lists are mutable, and hence, they can
be altered even after their creation.

List

Creating a list

>>> lang = ['Mar','Urd','San','Guj', 'Hin']

>>> type(lang)

<class 'list'>

• List of similar elements:
>>> col = ['blue','red','green','yellow']

• List of dissimilar elements:
>>> days = ['Mon','Tue','Wed',4,5,6]

Accessing and replacing elements

>>> days

['Mon', 'Tue', 'Wed', 4, 5, 6]

>>> print(lang)

['Mar', 'Urd', 'San', 'Guj', 'Hin']
• Indexing Starts from 0 to n-1

>>> print(lang[2])

San

>>> lang[1] = 'Kan'

>>> print(lang)

['Mar', 'Kan', 'San', 'Guj', 'Hin']

Negative Indexing

• We can access any collection element using
negative indexing i.e. from second end.

>>> print(days)

['Mon', 'Tue', 'Wed', 4, 5, 6]

>>> print(days[-1])

6

>>> days[-2] = 'Fri'

>>> print(days)

['Mon', 'Tue', 'Wed', 4, 'Fri', 6]

Creating a list of list

>>> months = [31,[28,29],31,30,31,30]

>>> type(months)

<class 'list'>

>>> months[1]

[28, 29]

>>> months[1][0]

28

Slicing the list

>>> num = [23,67,12,48,29,38,19]

>>> num[2:6]

[12, 48, 29, 38]

>>> num[2:]

[12, 48, 29, 38, 19]

>>> num[:5]

[23, 67, 12, 48, 29]

>>> num[:]

[23, 67, 12, 48, 29, 38, 19]

Replacing set of elements

>>> metals =['H','O','He','K','Si','Fe']

>>> metals

['H', 'O', 'He', 'K', 'Si', 'Fe']

>>> metals[2:4] = ['Na','S']

>>> metals

['H', 'O', 'Na', 'S', 'Si', 'Fe']

Existence of element using ‘in’

>>> metals = ['H','O','He','K','Si']

>>> 'O' in metals

True

>>> 'he' in metals

False

>>> 'O' not in metals

False

Deleting elements

>>> metals = ['H','O','He','K','Si']

>>> del metals[1]

>>> metals

['H', 'He', 'K', 'Si']

>>> del metals[1:3]

>>> metals

['H', 'Si']

>>> del metals

>>> metals

NameError: name 'metals' is not defined

Multi-dimensional list

>>> mat = [[1,2,3],[5,6,7],[4,[9,8]]]

>>> mat

[[1, 2, 3], [5, 6, 7], [4, [9, 8]]]

>>> mat[2]

[4, [9, 8]]

>>> mat[2][1]

[9, 8]

>>> mat[2][1][0]

9

Arithmetic operations

>>> num = [7,2,5,3,6]

>>> num * 2

[7, 2, 5, 3, 6, 7, 2, 5, 3, 6]

>>> num + [4,8]

[7, 2, 5, 3, 6, 4, 8]

>>> num += [0,9]

>>> num

[7, 2, 5, 3, 6, 0, 9]

Iterating through list

>>> num = [7,2,5,3,6]

>>> for n in num:

 if n % 2 != 0:

 print(n, end=' ')

7 5 3

List comprehension

• You can create a new list just like you would do in
mathematics. To do so, type an expression followed
by a for statement, all inside square brackets.

• You may assign it to a variable. Let’s make a list for
all even numbers from 1 to 20.

>>> even = [2*i for i in range(1,11)]

>>> even

[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Empty list

• You can create a list without any element in
Python.

>>> num = []

>>> num

[]

>>> type(num)

<class 'list'>

>>> len(num)

0

Assigning list elements

>>> num = [1,2,3]

>>> x,y,z = num

>>> x

1

>>> y

2

>>> z

3

Built-in functions

Built-in functions – 1

• len()

– It calculates the length of the list.

• max()

– It returns the item from the list with the highest
value.

• min()

– It returns the item from the Python list with the
lowest value.

• sum()

– It returns the sum of all the elements in the list.

Example:

>>> num = [7,2,5,8,6,4,3]

>>> len(num)

7

>>> max(num)

8

>>> min(num)

2

>>> sum(num)

35

Built-in functions – 2

• sorted()

– It returns a sorted version of the list, but does not
change the original one.

• list()

– It converts a different data type into a list.

• any()

– It returns True if even one item in the Python list has a
True value.

• all()

– It returns True if all items in the list have a True value.

Sort

>>> num = [7,2,5,8,6,4,3]

>>> sorted(num)

[2, 3, 4, 5, 6, 7, 8]

>>> num = [7,2,'X',5,8,True]

>>> sorted(num)
Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unorderable types: str() < int()

list() and any()

>>> list('xyz')

['x', 'y', 'z']

>>> data = [0,0,0,0,False]

>>> any(data)

False

>>> data = [0,0,3,0,False]

>>> any(data)

True

all()

>>> data = [0,0,3,0,False]

>>> all(data)

False

>>> data = [4,7,2,4,6,7]

>>> all(data)

True

>>> data = [4,7,2,0,6,7]

>>> all(data)

False

Built-in methods

Built-in methods

>>> num = [7,2,5,8,6,4,3]

>>> num.append(0)

>>> num

[7, 2, 5, 8, 6, 4, 3, 0]

>>> num.insert(1,5)

>>> num

[7, 5, 2, 5, 8, 6, 4, 3, 0]

>>> num.remove(5)

>>> num

[7, 2, 5, 8, 6, 4, 3, 0]

Built-in methods

>>> num = [7,2,5,8,6,4,3]

>>> x = num.pop()

>>> x

3

>>> num

[7, 2, 5, 8, 6, 4]

>>> num.index(8)

3

>>> num.count(3)

0

Built-in methods

>>> num = [7,2,5,8,6,4,3]

>>> num.sort()

>>> num

[2, 3, 4, 5, 6, 7, 8]

>>> num.reverse()

>>> num

[8, 7, 6, 5, 4, 3, 2]

Reading and using elements

arr = []

n = int(input('How many elements? '))

for x in range(n):

 num = int(input('Enter number:'))

 arr.append(num)

print(‘List is:’, arr)

Exercise

• This is a list of some metallic elements.

metals = ['silver','gold', ...]

• Make a new list that is almost identical to the
metals list: the new contains the same items, in
the same order, except that it does NOT contain
the item 'copper'.

Solution

Exercise

• Given the list of ten elements. Sort only higher
order 50% list and print it.

Ex. Before: [5, 6, 2, 8, 9, 1, 3, 7, 4, 0]

After: [5, 6, 2, 8, 9, 0, 1, 3, 4, 7]

• Given the list of ten elements. Sort odd
elements so even elements will not change
their positions.

Before: [12, 13, 6, 10, 3, 1, 17, 18, 14, 15]

After: [12, 1, 6, 10, 3, 13, 15, 18, 14, 17]

Exercise

• Sort ratio is the percentage of elements present
in the ascending or descending order in a list.
For example: List: [12, 13, 6, 10, 3, 1, 17, 18, 14,
15] has sort ratio: 55.56. Write a program to
read list of 10 elements and find ascending sort
ratio.

• Write a program to count a total number of
duplicate elements in an array. Ex. List –
[3,6,4,6,8,3,5,3,7,4] has total duplicate elements:
2 that is 6 and 4.

Exercise

• Write a program to read 10 elements from user and
create another list which contains frequency of each
element from first list.

• Write a program to separate odd and even integers in
separate lists.

• Write a program to find the second largest element in
a list.

• Write a program for a 2D list of size 3x3 and print the
matrix.

• Write a program to calculate determinant of a 3 x 3
matrix.

Exercise

• Read n number of elements from the user and
find addition and average of only odd elements.

• Write a program to check whether an array is
subset of another array.
– Expected Output :
• The given first array is : 4 8 7 11 6 9 5 0 2
• The given second array is : 5 4 2 0 6
• The second array is the subset of first

array.

Tuple

• Python Tuples are like a list. It can hold a sequence
of items. The difference is that it is immutable.

Creating a tuple

>>> per = (67,85,69,72,63)

>>> print(per)

(67, 85, 69, 72, 63)

>>> type(per)

<class 'tuple'>

>>> data = 1,56.34,'Ajay'

>>> data

(1, 56.34, 'Ajay')

>>> type(data)

<class 'tuple'>

Accessing a tuple

>>> per = (67,85,69,72,63)

>>> per[2]

69

>>> per[2:5]

(69, 72, 63)

>>> per[-2]

72

Tuple functions

Built-in functions – 1

• len()

– It calculates the length of the tuple.

• max()

– It returns the item from the tuple with the highest
value.

• min()

– It returns the item from the tuple with the lowest
value.

• sum()

– It returns the sum of all the elements in the tuple.

Example:

>>> num = (7,2,5,8,6,4,3)

>>> len(num)

7

>>> max(num)

8

>>> min(num)

2

>>> sum(num)

35

Built-in functions – 2

• sorted()

– It returns a sorted version of the tuple, but does not
change the original one.

• tuple()

– It converts a different data type into a tuple.

• any()

– It returns True if even one item in the tuple has a True
value.

• all()

– It returns True if all items in the tuple have a True value.

Sort

>>> num = (7,2,5,8,6,4,3)

>>> sorted(num)

[2, 3, 4, 5, 6, 7, 8]

>>> num = (7,2,'X',5,8,True)

>>> sorted(num)
Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unorderable types: str() < int()

tuple() and any()

>>> tuple('xyz')

('x', 'y', 'z')

>>> data = (0,0,0,0,False)

>>> any(data)

False

>>> data = (0,0,3,0,False)

>>> any(data)

True

all()

>>> data = (0,0,3,0,False)

>>> all(data)

False

>>> data = (4,7,2,4,6,7)

>>> all(data)

True

>>> data = (4,7,2,0,6,7)

>>> all(data)

False

Methods of tuple

• index()

– This method takes one argument and returns the
index of the first appearance of an item in a
tuple.

>>> per.index(63)

• count()

– This method takes one argument and returns the
number of times an item appears in the tuple.

>>> per.count(85)

More operations

• Membership :

>>> 56 in per

False

>>> 81 not in per

True

• Concatenation:

>>> per + (18,43)

(67, 85, 69, 72, 63, 18, 43)

>>> new = per + (18,43)

>>> new

(67, 85, 69, 72, 63, 18, 43)

More operations

• Iteration:

>>> per

(67, 85, 69, 72, 63)

>>> for n in per:

 print(n, sep=' ')

• Nesting:

>>> num = (23,(2,7),11,36)

>>> num[1]

(2, 7)

>>> num[1][0]

2

Sample list of tuple

Example:

• Find name of the topper in the previous
program.

Solution

Dictionary

• A real-life dictionary holds words and their
meanings.

• As you can imagine, likewise, a Python
dictionary holds key-value pairs.

Using a dictionary

Creating a dictionary

>>> d = {'a':'apple','b':'ball'}

>>> num = {1:25, 3:10, 5:11}

>>> type(d)

<class 'dict'>

>>> type(num)

<class 'dict'>

>>> num = {1:25, 3:10, 5:11, 'x':'data'}

>>> type(num)

<class 'dict'>

Accessing and adding elements

>>> d['a']

'apple'

>>> num[3]

10

>>> num[2] = 20

>>> num

{1: 25, 2: 20, 3: 10, 5: 11, 'x':
'data'}

Using dict() function

>>> data = ([1,56],[2,49],[6,75])

>>> d = dict(data)

>>> d

{1: 56, 2: 49, 6: 75}

>>> type(d)

<class 'dict'>

More operations

Declaring more than once

>>> d = {1:45,6:23,4:23,6:27}

>>> d

{1: 45, 4: 23, 6: 27}

Empty dictionaries

>>> animals={}

>>> type(animals)

<class 'dict'>

>>> animals[1]='dog'

>>> animals[2]='cat'

>>> animals[3]='ferret'

>>> animals

{1: 'dog', 2: 'cat', 3: 'ferret'}

Dictionary methods

• keys()
– The keys() method returns a list of keys in a

Python dictionary.

• values()
– Likewise, the values() method returns a list of

values in the dictionary.

• items()
– This method returns a list of key-value pairs.

Dictionary methods

>>> data = {2:45,5:38,6:11,7:105,9:20}

>>> data.keys()

dict_keys([9, 2, 5, 6, 7])

>>> data.values()

dict_values([20, 45, 38, 11, 105])

>>> data.items()

dict_items([(9, 20), (2, 45), (5, 38),
(6, 11), (7, 105)])

Methods

• get()
– It takes one to two arguments. While the first

is the key to search for, the second is the
value to return if the key isn’t found. The
default value for this second argument is
None.

• clear()
– The clear function’s purpose is obvious. It

empties the Python dictionary.

Methods

>>> data

{9: 20, 2: 45, 5: 38, 6: 11, 7: 105}

>>> data.get(2,1)

45

>>> data.get(4,5)

5

>>> data.get(7,110)

105

Methods

• copy()
– The copy() method creates a shallow copy of

the Python dictionary.

• pop()
– This method is used to remove and display an

item from the dictionary. It takes one to two
arguments. The first is the key to be deleted,
while the second is the value that’s returned
if the key isn’t found.

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 5.1.6.2, can be used freely as per GNU General Public License

Web Resources
http://mitu.co.in

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies c/MITUSkillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

