
Object Oriented Programming in Python

Tushar B. Kute,
http://tusharkute.com

Programming Languages

Computer Languages

Imperative Declarative

Procedural
e.g. C

Object Based
e.g. ADA

Object Oriented
e.g. C++, JAVA

Block Structured
e.g. PASCAL

Logical
e.g. PROLOG

Functional
e.g. LISP

Database
e.g. SQL

Procedure Oriented Programming

Main Program

Function
A

Function
B

Function
C

Function
D

Function
E

Function
F

Object Oriented Programming

Function
Function

Function
Function

Shared
Data

Object

What is Object Oriented Programming?

• Object-oriented Programming, or OOP for short,
is a programming paradigm which provides a
means of structuring programs so that properties
and behaviors are bundled into individual objects.

• For instance, an object could represent a person
with a name property, age, address, etc., with
behaviors like walking, talking, breathing, and
running. Or an email with properties like recipient
list, subject, body, etc., and behaviors like adding
attachments and sending.

What is Object Oriented Programming?

• Put another way, object-oriented programming
is an approach for modeling concrete, real-
world things like cars as well as relations
between things like companies and employees,
students and teachers, etc.

• OOP models real-world entities as software
objects, which have some data associated with
them and can perform certain functions.

Class

Classes are used to create new user-defined data
structures that contain arbitrary information about
something. In the case of an car, we could create an Car()
class to track properties about the Car like the fuel and
maxspeed.

Objects

• While the class is the blueprint, an instance is a copy
of the class with actual values, literally an object
belonging to a specific class.

• Put another way, a class is like a form or
questionnaire.

• It defines the needed information. After you fill out
the form, your specific copy is an instance of the
class; it contains actual information relevant to you.

Objects

OOP Features

• Reduction in the complexity

• Importance of data

• Creation of new data structure

• Data Hiding

• Characterization of the objects

• Communication among objects

• Extensibility

• Bottom-up programming approach

OOP Concepts

• Class

• Object

• Data Hiding / abstraction / encapsulation

• Inheritance

• Polymorphism

• Dynamic Binding

Example:

What is self?

• Class methods must have an extra first parameter in
method definition. We do not give a value for this
parameter when we call the method, Python provides it.

• If we have a method which takes no arguments, then we
still have to have one argument – the self. See fun() in
above simple example.

• This is similar to this pointer in C++ and this reference in
Java.

• When we call a method of this object as
myobject.method(arg1, arg2), this is automatically
converted by Python into MyClass.method(myobject, arg1,
arg2) – this is all the special self is about.

The __init__ method

• The __init__ method is similar to constructors in
C++ and Java.

• It is executed as soon as an object of a class is
instantiated.

• The method is useful to do any initialization you
want to do with your object.

Example

p

name

say_hi()

Person

Class and instance variables

• In Python, instance variables are variables
whose value is assigned inside a
constructor or method with self.

• Class variables are variables whose value
is assigned in class. These are similar to
static variables in C++ and Java.

Example

Instance variables in normal methods

Empty class

• We can create an empty class using pass statement
in Python.

Data Hiding

• In simple words, data hiding is an object-oriented
programming technique of hiding internal object
details i.e. data members.

• Data hiding guarantees restricted data access to
class members & maintain object integrity.

• Encapsulation, abstraction & data hiding is
closely related to each other.

• In Python, we use double underscore (or __)
before the attributes name and those attributes
will not be directly visible outside.

Example

What is private?

• Private methods are accessible outside their
class, just not easily accessible.

• Nothing in Python is truly private; internally, the
names of private methods and attributes are
mangled and unmangled on the fly to make
them seem inaccessible by their given names.

• We can access the value of hidden attribute by a
tricky syntax.

Accessing private variables

Printing objects

• Printing objects gives us information about
objects we are working with.

• In C++, we can do this by adding a friend
ostream& operator << (ostream&, const
Foobar&) method for the class.

• In Java, we use toString() method.

• In python this can be achieved by using
__repr__ or __str__ methods.

Example:

Without __str__

• If no __repr__ method is defined then the
default is used.

Inheritance

• One of the major advantages of Object
Oriented Programming is re-use.

• Inheritance is one of the mechanisms to achieve
the same.

• In inheritance, a class (usually called superclass)
is inherited by another class (usually called
subclass).

• The subclass adds some attributes to
superclass.

Inheritance

Simple Inheritance

Check the subclass

Multiple Inheritance

• Multiple Inheritance is a type of inheritance
where a class can inherit from more than one
classes.

Class A Class B

Class C

Example

Accessing the super class

Accessing the super class

Overloading

• Method overloading refers to defining same
method name with multiple number of times
with different parameters.

• Python does not support the method
overloading.

• But by some alternative method we can create
single method to perform different task, which
is NOT actually the method overloading.

Example

Destructor

• Destructors are called when an object gets
destroyed or out of scope.

• In Python, destructors are not needed as much
needed in C++ because Python has a garbage
collector that handles memory management
automatically.

• The __del__() method is a known as a destructor
method in Python.

• It is called when all references to the object have
been deleted i.e when an object is garbage collected.

Example

Operator Overloading

• Operator Overloading means giving extended
meaning beyond their predefined operational
meaning.

• For example operator + is used to add two integers as
well as join two strings and merge two lists.

• It is achievable because ‘+’ operator is overloaded by
int class and str class.

• You might have noticed that the same built-in
operator or function shows different behavior for
objects of different classes, this is called Operator
Overloading.

Exercises

Exercises

• Write a Python class which has two methods
get_String and print_String. get_String accept a
string from the user and print_String print the
string in upper case.

• Write a Python class named Rectangle
constructed by a length and width and a method
which will compute the area of a rectangle.

• Write a Python class named Circle constructed
by a radius and two methods which will compute
the area and the perimeter of a circle.

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 5.1.6.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies MITUSkillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

