
Computer Vision

Tushar B. Kute,
http://tusharkute.com



Computer Vision

• Computer vision is one of the fields of artificial 
intelligence that trains and enables computers to 
understand the visual world. 

• Computers can use digital images and deep 
learning models to accurately identify and classify 
objects and react to them.

• Computer vision in AI is dedicated to the 
development of automated systems that can 
interpret visual data (such as photographs or 
motion pictures) in the same manner as people do. 



Computer Vision

• The idea behind computer vision is to instruct computers 
to interpret and comprehend images on a pixel-by-pixel 
basis. 

• This is the foundation of the computer vision field. 
Regarding the technical side of things, computers will 
seek to extract visual data, manage it, and analyze the 
outcomes using sophisticated software programs.

• The amount of data that we generate today is tremendous 
i.e. 2.5 quintillion bytes of data every single day. 

• This growth in data has proven to be one of the driving 
factors behind the growth of computer vision.



Computer Vision: How?



Computer Vision : Timeline

• Early Seeds (Pre-1960s):
– Ancient Inspiration: 
• The earliest ideas for artificial vision can be traced 

back to ancient philosophers like Aristotle, who 
observed the principles of pinhole cameras.

– Camera Obscura: 
• This optical device, dating back to the 5th century 

BC, projected an inverted image onto a screen, 
laying the foundation for capturing visual 
information.



Computer Vision : Timeline

• The Dawn of Computer Vision (1960s):
– 1959: The first digital image scanner is invented, 

paving the way for computers to process visual 
data.

– 1963: Larry Roberts, often called the "father of 
computer vision," publishes his thesis on extracting 
3D information from 2D images, laying the 
groundwork for object recognition.

– 1966: Marvin Minsky proposes the idea of 
connecting a camera to a computer, sparking the 
pursuit of machines that can "see" like humans.



Computer Vision : Timeline

• Building the Foundations (1970s-1980s):
– 1970s: Researchers focus on tasks like edge 

detection, line labeling, and 3D modeling, laying the 
groundwork for image understanding.

– 1980s: Kunihiko Fukushima develops the 
"neocognitron," an early precursor to modern 
convolutional neural networks.

– Advancements in image processing: Techniques like 
scale-space analysis and shape inference from 
shading and texture emerge, enabling more 
sophisticated image analysis.



Computer Vision : Timeline

• The Rise of Machine Learning (1990s-2000s):
– 1990s: Camera calibration, multi-view stereo 

reconstruction, and image segmentation with graph 
cuts pave the way for advanced 3D scene 
understanding.

– 2001: The Viola-Jones face detection algorithm 
revolutionizes real-time object recognition, leading to 
applications like facial recognition and surveillance.

– 2009: Deep learning takes center stage with the rise of 
convolutional neural networks, bringing significant 
breakthroughs in image recognition and classification.



Computer Vision : Timeline



Computer Vision : Timeline

• The Deep Learning Revolution (2010s-Present):
– ImageNet Challenge: This annual competition 

becomes a driving force for deep learning 
advancements, pushing the boundaries of image 
recognition accuracy.

– Self-driving cars: Companies like Google and 
Tesla pioneer autonomous vehicles that rely 
heavily on computer vision for navigation and 
obstacle detection.



Computer Vision : Timeline

• The Deep Learning Revolution (2010s-
Present):
– Facial recognition: Advancements in deep learning 

make facial recognition more accurate and 
efficient, leading to its adoption in various fields 
like security and marketing.

– Computer vision beyond images: Research expands 
into video analysis, 3D object understanding, and 
scene reconstruction, opening up new possibilities 
for robotics and augmented reality.



Computer Vision: History



Three R: Computer Vision 

• The combination of natural language processing 
and computer vision involves three key interrelated 
processes: recognition, reconstruction, and 
reorganization.



Computer Vision 

• Recognition: 
– This process involves assigning digital labels 

to objects within the image. 
– Examples of recognition are handwriting or 

facial recognition for 2D objects, and 3D 
assignments handle challenges such as 
moving object recognition which helps in 
automatic robotic manipulation.



Computer Vision 

• Reconstruction: 
– This process refers to 3D scene rendering 

given inputs from particular visual images by 
incorporating multiple viewpoints, digital 
shading, and sensory depth data. 

– The outcome results in a 3D digital model 
that is then used for further processing.



Computer Vision 

• Reorganization: 
– This process refers to raw pixel segmentation 

into data groups that represent the design of 
a pre-determined configuration. 

– Low-level vision tasks include corner 
detection, edges, and contours; while high-
level tasks involve semantic segmentation, 
which can partly overlap with recognition 
processes.



Computer Vision Levels

• Computer vision is divided into three basic 
categories that are as following:

• Low-level vision: 
– includes process image for feature extraction.

• Intermediate-level vision: 
– includes object recognition and 3D scene 

Interpretation

• High-level vision: 
– includes conceptual description of a scene like 

activity, intention and behavior.



Applications

• Autonomous Vehicles: 
– Self-driving automobiles use CV systems to gather 

information regarding their surroundings and interpret 
that data to determine their next actions and behavior.

• Robotic Applications: 
– Manufacturing robotic machines using CV, 'view' and 

'comprehend' their surroundings to perform their 
scheduled tasks. 

– In manufacturing, such systems inspect assembly items 
to determine faults and tolerance limits - simply by 
'looking' at them as they traverse the production line.



Applications

• Image Search and Object Recognition: 
– Applications use CV data vision theory to 

identify specific objects within digital images, 
search through catalogs of product images, and 
extract information from photos.

• Facial Recognition: 
– Businesses and Government departments use 

facial recognition technology (that have 
adopted CV) to 'see' precisely what an 
individual is trying to gain access to.



Future 

• Designing: 
–Within the area of home design, designer clothes, 

jewelry making, etc., customer systems can 
understand verbal or written requirements and 
thereby automatically convert these instructions to 
digital images for enhanced visualization.

• Describing Medical Images: 
– computer vision systems can be trained to identify 

more modest human ailments and use digital 
imagery in finer detail than human medical 
specialists.



Future 

• Converting Sign Language: to speech or written text to 
assist the deaf and hard of hearing individuals in 
interacting with their surroundings. This enhanced 
capability can ensure their better integration within 
society.

• Surrounding Cognition: Constructing an intelligent 
system that 'sees' its surroundings and delivers a 
(recorded) spoken narrative. This outcome will be of use 
for visually impaired individuals.

• Converting Words to Images: Producing intelligent 
systems that convert spoken content to a digital image 
may assist people who do not talk and hear.



Loading an image

• Writing code in a specific programming 
language? (e.g., Python, Java, JavaScript)

• Working with a particular software or platform? 
(e.g., Photoshop, Google Docs, HTML)

• Trying to display an image on a website or 
device?



Loading an image

• OpenCV (cv2):
– Popular for real-time computer vision and 

image processing.
– Efficient for handling large images and 

videos.



Loading an image

• Pillow (PIL):
– Offers simple and intuitive image 

manipulation tools.
– Works well for basic image processing tasks.



Loading an image

• Matplotlib:
– Primarily for data visualization, but can also 

handle images.
– Integrates well with other scientific Python 

libraries.



Loading an image

•  scikit-image (skimage):
– Comprehensive image processing library.
– Offers advanced image analysis and 

manipulation tools.



Loading an image

• TensorFlow:
– Machine learning framework with image 

loading capabilities.
– Useful when working with images for deep 

learning tasks.



Loading an image

• Key considerations when choosing a library:
– Purpose: Consider the specific image 

processing tasks you need to perform.
– Performance: Evaluate speed and memory 

usage for large images or videos.
– Integration: Ensure compatibility with other 

libraries in your project.
– Ease of use: Choose a library with a clear and 

concise API for your needs.



How images get converted to numbers?

• The transformation of an image into a series of 
numbers, like magic, is the foundation of how 
computers understand and process visual 
information.



Pixel Power

• Imagine your favorite image like a mosaic. 
• Each tiny square tile in that mosaic is called a 

pixel. 
• It's the smallest unit of information in a digital 

image, and like a tiny paintbrush, it holds the 
color information for that specific point.



Color Decoding

• Computers don't directly understand colors like we do. They 
speak the language of numbers. So, each pixel's color needs to 
be translated into a numerical value. This depends on the 
image format:
– Black and white: Each pixel gets a value between 0 (black) 

and 255 (white).
– Grayscale: Similar to black and white, but with more tonal 

variations, ranging from 0 to 255, where higher values 
represent lighter shades.

– Color (RGB): For vibrant hues, we have red, green, and blue 
(RGB) channels. Each channel gets a value between 0 and 
255, and these values are combined to create the final color 
we see. Think of it like mixing primary colors to paint!



Color Decoding



Grid to numbers

• Now, picture all the pixels lined up neatly, 
forming a grid. 

• Each pixel has its own numerical value based on 
its color. 

• This grid of numbers becomes the digital 
representation of the image in the computer's 
memory.



Beyond the surface

• Simple images might only have one layer of 
numbers (like grayscale). But for complex images 
with depth and detail, there might be additional 
layers:
– Alpha channel: This controls transparency, 

allowing pixels to be partially visible or invisible.
– Depth channel: This encodes depth information 

for 3D scenes, used in applications like 
augmented reality.



Binary Symphony

• Ultimately, all these numbers are stored in the 
computer's memory as binary digits, or bits. 

• These 0s and 1s are the fundamental language of 
computers, and the intricate arrangement of these 
bits represents the image in its entirety.

• So, the next time you see a digital image, remember 
the hidden symphony of numbers dancing behind 
the scenes, allowing computers to perceive and 
interpret the visual world just like us!



Grayscale vs. Color Images

• Colour pixels are different from grayscale pixels. 
• Colour pixels are RGB, meaning they have three 

pieces of information associated with them, 
namely the Red, Green and Blue components. 

• Grayscale pixels have one component, a gray 
tone derived from a graduate scale from black 
to white. 

• A colour pixel is generally 24-bit (3 × 8-bit), and a 
gray pixel is just 8-bit. 



Grayscale vs. Color Images

• This basically means that a colour pixel has a 
triplet value comprised of 0..255 for each of red, 
green and blue components, whereas a 
grayscale pixel has a single values 0..255. 

• The figure below compares a colour and 
grayscale pixel. 

• The colour pixel has the R-G-B value 61-80-
136.The grayscale pixel has the value 92.



Grayscale vs. Color Images

• It is easy to convert a pixel from colour to grayscale 
(like applying a monochrome filter in a digital 
camera). 

• The easiest method is simply averaging the three 
values of R, G, and B. In the sample above, the 
grayscale pixel is actually the converted RGB: 
(61+80+136)/3 = 92.



Grayscale vs. Color Images

• Now colour images also contain regions that are 
gray in colour – these are 24-bit “gray” pixels, as 
opposed to 8-bit grayscale pixels. 

• The example below shows a pixel in a grayscale 
image, and the corresponding “gray” pixel in the 
colour image. 

• Grayscale pixels are pure shades of gray. Pure 
shades of gray in colour images are often 
represented with RGB all having the same value, 
e.g. R=137, G=137, B=137.



Grayscale vs. Color Images



Grayscale

• Advantages:
– Smaller file size, making them more efficient 

for storage and transmission.
– Simpler and faster to process, making them 

suitable for real-time applications.
– Can highlight certain features or textures that 

might be masked by color in the original image.
– Can evoke a sense of nostalgia or timelessness.



Grayscale

• Disadvantages:
– Lack the color and vibrancy of the original 

image, making it visually less appealing.
– Certain tasks like object recognition might be 

more challenging due to the absence of color 
information.

– Not suitable for applications requiring 
accurate color representation.



Color Images

• Advantages:
– More realistic and visually appealing, 

showcasing the full richness of the visual 
world.

– Useful for tasks like object recognition and 
classification, as color can be a key 
discriminant feature.

– Generally preferred for artistic expression 
and emotional impact.



Color Images

• Disadvantages:
– Larger file size due to the presence of three 

channels.
– Increased processing requirements for 

manipulation and analysis.
– Certain features or details might be obscured 

due to color dominance.



Which one to choose?

• The importance of color: 
– If color is crucial for understanding the content or 

conveying emotions, then color images are the 
better choice.

• File size and processing requirements: 
– If storage space or processing speed is a concern, 

grayscale might be a better option.
• Target audience and application: 
– Who will be viewing the images and for what 

purpose? Consider their preferences and the specific 
needs of the application.



Grayscale vs. Color: Summary

• Grayscale images have a single channel 
representing intensity, while color images have 
three channels (RGB).

• Grayscale conversion is often used for tasks like 
edge detection, object recognition, and 
reducing processing overhead.



Saving Images

• cv2.imwrite('saved_image.jpg', img)
• img.save('saved_image.png') # PIL
• plt.imsave('saved_image.bmp', img)
• io.imsave('saved_image.tif', img) # scikit
• tf.io.write_file('saved_image.png', 

tf.image.encode_png(img))



RGB Channels

• RGB channels," refers to the three primary color 
channels that combine to form the vast majority 
of digital images and colors we see on screens. 

• Imagine each pixel in an image as a tiny 
chamber, and within that chamber exist three 
separate compartments, each one dedicated to 
a specific color: 
– Red, Green, and Blue.



RGB Channels



RGB Channels

• Red: 
– This channel controls the intensity of the red 

component in the pixel's overall color. 
– Higher values of red will make the pixel 

appear more reddish, while lower values will 
bring out other colors or tend towards black.



RGB Channels

• Green: 
– Similar to red, the green channel governs the 

green component in the pixel's color. Adjusting 
its value influences how much green is present, 
affecting the overall hue and vibrancy.

• Blue: 
– Lastly, the blue channel manages the blue 

component, adding depth and coolness to the 
pixel's color. Its intensity plays a crucial role in 
creating various shades and tones.



RGB Channels: Combination

• Mixing high red and green results in yellow, 
while combining red and blue creates purple.

• Balancing all three channels at their maximum 
level (255 each) produces pure white, and 
setting them to zero yields black.

• The interplay of these values in every pixel 
across an image forms the intricate tapestry of 
colors and details we perceive.



BGR Channels

• While RGB (Red, Green, Blue) is the most 
commonly used and intuitive way to represent 
color channels in digital images, some systems, 
particularly in computer vision and image 
processing, utilize BGR (Blue, Green, Red) 
instead.



BGR Channels: Why?

• Hardware Optimization: Some early image processing 
hardware was optimized for BGR order, making it the 
default for certain libraries and frameworks.

• OpenCV Legacy: OpenCV, a popular library for 
computer vision, adopted BGR as its default due to 
compatibility with older hardware and software.

• Channel Interpretation: While the interpretation of 
red, green, and blue remains the same, the order 
simply swaps the blue and red channels. Both RGB and 
BGR effectively capture the full spectrum of colors.



BGR Channels: Understanding

• While BGR might seem unfamiliar at first, knowing 
its existence and potential reasons for usage is 
crucial when working with computer vision and 
image processing libraries.
– Always check the documentation of the specific 

library or framework you're using to determine 
the default color channel order.

– Be aware of potential conversion needs when 
comparing or transferring data between systems 
using different conventions.



How to convert?

• OpenCV: 
– cv2.cvtColor(img, cv2.COLOR_BGR2RGB) or 

cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
• Pillow: 
– img.convert('RGB') or img.convert('BGR')

• Matplotlib: 
– Similar to Pillow, using the appropriate color 

space when saving or displaying the image.



RGB vs. BGR: Function

• Both RGB and BGR represent the same color 
information within a pixel. 

• They control the intensity of red, green, and 
blue components to create the entire spectrum 
of colors we see on screens.



RGB vs. BGR: Order

• The key difference lies in the order of the channels.
– RGB: This is the more common and intuitively 

understood order in many fields like graphic 
design, media, and consumer electronics.

– BGR: This order is primarily used in computer 
vision and image processing libraries like 
OpenCV, often due to historical conventions and 
hardware optimization for early image 
processing setups.



RGB vs. BGR: Interplay

• Both RGB and BGR channels work together to 
produce vibrant colors. 

• Adjusting their values influences the overall hue 
and saturation of a pixel. 

• Higher values of a specific channel increase its 
presence, while lower values bring out other 
colors or tend towards black.



RGB vs. BGR: Conversion

• Switching between RGB and BGR is usually 
straightforward:
– Most libraries and frameworks offer built-in 

functions for conversion, like cv2.cvtColor() in 
OpenCV or img.convert() in Pillow.

– Be aware of the default color space used by 
the specific library or framework you're 
working with.



RGB vs. BGR: Impact

• The choice between RGB and BGR primarily 
impacts technical aspects:
– Data compatibility: 
• When transferring data between systems 

using different conventions, conversion 
might be necessary.

– Library-specific code: 
• If using BGR-based libraries like OpenCV, be 

mindful of color channel order in 
calculations and interpretations.



cmap

• In the realm of OpenCV, cmap acts as a magical 
paintbrush, enabling you to create captivating 
visualizations of images that transcend beyond the 
ordinary. 

• It's often used with functions like applyColorMap() 
to apply different colormaps, each revealing unique 
information and enhancing visual perception.



ColorMap

• It's a predefined set of colors that are mapped 
to numerical values within an image.

• It acts as a translator, converting numerical data 
into visually interpretable colors.

• OpenCV offers a diverse palette of built-in 
colormaps, each catering to specific 
visualization needs.



ColorMap: Sequential

• Ideal for representing continuous data with a natural 
progression of colors.

• Examples:
– Grayscale: Showcases intensity variations in shades of 

gray.
– Jet: Progresses from blue to red, often used for 

heatmaps and gradients.
– Hot: Emphasizes higher values with a transition from 

black to red.
– Bone: Simulates X-ray images with a bone-like 

appearance.



ColorMap: Sequential



ColorMap: Diverging

• Designed to highlight both high and low values, 
diverging from a central color.

• Examples:
– Coolwarm: Transitions from blue to red, useful 

for representing bipolar data.
– Spectral: Spans a wide range of hues, often used 

for scientific visualizations.
– Seismic: Employs a seismic-like color scheme 

with distinct divisions.



ColorMap: Diverging



ColorMap: Cyclic

• Wraps colors around a circular spectrum, useful for 
representing periodic data.

• Examples:
– HSV: Represents Hue, Saturation, and Value, 

creating a circular color wheel.
– Rainbow: Mimics a rainbow's spectrum, often 

used for categorical data.
– Turbo: Offers a visually balanced colormap with 

smooth transitions.



ColorMap: Cyclic



Colormap in matplotlib

• Sequential: Ideal for representing numerical data 
with a continuous range, where high and low values 
are clearly distinguished. Examples include:
– viridis: Perceptually uniform and widely used for 

its visual clarity.
– plasma: Offers a visually pleasing purple-to-

yellow gradient.
– inferno: Emphasizes mid-range values with a 

fiery color scheme.



Colormap in matplotlib

• Diverging: Optimized for data with a central neutral 
point and values that diverge towards positive and 
negative extremes. Examples include:
– RdBu: Transitions from red to blue, effectively 

highlighting differences.
– coolwarm: Shifts from cool colors (blue) to warm 

colors (red), useful for representing opposing 
trends.



Colormap in matplotlib

• Cyclical: Suitable for data with a cyclical nature, 
where the highest and lowest values smoothly 
blend. Examples include:
– hsv: Cycles through hues, useful for 

representing angular quantities.
– twilight: Mimics the colors of twilight, ideal 

for periodic data.



Colormap in matplotlib

• Qualitative: Best for categorical data where 
different colors represent distinct categories 
rather than numerical values. Examples include:
– tab10: Ten distinct colors for representing up 

to ten categories.
– Set2: Eight aesthetically pleasing colors for 

categorical distinctions.



tushar@tusharkute.com

      Thank you

This presentation is created using LibreOffice Impress 7.4.1.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

@mITuSkillologies @mitu_group

contact@mitu.co.in

@mitu-skillologies @MITUSkillologies

@mituskillologies@mituskillologies

mailto:tushar@tusharkute.com
https://mitu.co.in/
http://tusharkute.com/
mailto:contact@mitu.co.in
https://instagram.com/mitu_skillologies
https://fb.com/MITUSkillologies
https://twitter.com/mitu_group
https://www.linkedin.com/company/mitu-skillologies/
https://youtube.com/MITUSkillologies
https://github.com/mituskillologies/
https://www.kaggle.com/mituskillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

