
Computer Vision

Tushar B. Kute,
http://tusharkute.com

Computer Vision

• Computer vision is one of the fields of artificial
intelligence that trains and enables computers to
understand the visual world.

• Computers can use digital images and deep
learning models to accurately identify and classify
objects and react to them.

• Computer vision in AI is dedicated to the
development of automated systems that can
interpret visual data (such as photographs or
motion pictures) in the same manner as people do.

Computer Vision

• The idea behind computer vision is to instruct computers
to interpret and comprehend images on a pixel-by-pixel
basis.

• This is the foundation of the computer vision field.
Regarding the technical side of things, computers will
seek to extract visual data, manage it, and analyze the
outcomes using sophisticated software programs.

• The amount of data that we generate today is tremendous
i.e. 2.5 quintillion bytes of data every single day.

• This growth in data has proven to be one of the driving
factors behind the growth of computer vision.

Computer Vision: How?

Computer Vision : Timeline

• Early Seeds (Pre-1960s):
– Ancient Inspiration:
• The earliest ideas for artificial vision can be traced

back to ancient philosophers like Aristotle, who
observed the principles of pinhole cameras.

– Camera Obscura:
• This optical device, dating back to the 5th century

BC, projected an inverted image onto a screen,
laying the foundation for capturing visual
information.

Computer Vision : Timeline

• The Dawn of Computer Vision (1960s):
– 1959: The first digital image scanner is invented,

paving the way for computers to process visual
data.

– 1963: Larry Roberts, often called the "father of
computer vision," publishes his thesis on extracting
3D information from 2D images, laying the
groundwork for object recognition.

– 1966: Marvin Minsky proposes the idea of
connecting a camera to a computer, sparking the
pursuit of machines that can "see" like humans.

Computer Vision : Timeline

• Building the Foundations (1970s-1980s):
– 1970s: Researchers focus on tasks like edge

detection, line labeling, and 3D modeling, laying the
groundwork for image understanding.

– 1980s: Kunihiko Fukushima develops the
"neocognitron," an early precursor to modern
convolutional neural networks.

– Advancements in image processing: Techniques like
scale-space analysis and shape inference from
shading and texture emerge, enabling more
sophisticated image analysis.

Computer Vision : Timeline

• The Rise of Machine Learning (1990s-2000s):
– 1990s: Camera calibration, multi-view stereo

reconstruction, and image segmentation with graph
cuts pave the way for advanced 3D scene
understanding.

– 2001: The Viola-Jones face detection algorithm
revolutionizes real-time object recognition, leading to
applications like facial recognition and surveillance.

– 2009: Deep learning takes center stage with the rise of
convolutional neural networks, bringing significant
breakthroughs in image recognition and classification.

Computer Vision : Timeline

Computer Vision : Timeline

• The Deep Learning Revolution (2010s-Present):
– ImageNet Challenge: This annual competition

becomes a driving force for deep learning
advancements, pushing the boundaries of image
recognition accuracy.

– Self-driving cars: Companies like Google and
Tesla pioneer autonomous vehicles that rely
heavily on computer vision for navigation and
obstacle detection.

Computer Vision : Timeline

• The Deep Learning Revolution (2010s-
Present):
– Facial recognition: Advancements in deep learning

make facial recognition more accurate and
efficient, leading to its adoption in various fields
like security and marketing.

– Computer vision beyond images: Research expands
into video analysis, 3D object understanding, and
scene reconstruction, opening up new possibilities
for robotics and augmented reality.

Computer Vision: History

Three R: Computer Vision

• The combination of natural language processing
and computer vision involves three key interrelated
processes: recognition, reconstruction, and
reorganization.

Computer Vision

• Recognition:
– This process involves assigning digital labels

to objects within the image.
– Examples of recognition are handwriting or

facial recognition for 2D objects, and 3D
assignments handle challenges such as
moving object recognition which helps in
automatic robotic manipulation.

Computer Vision

• Reconstruction:
– This process refers to 3D scene rendering

given inputs from particular visual images by
incorporating multiple viewpoints, digital
shading, and sensory depth data.

– The outcome results in a 3D digital model
that is then used for further processing.

Computer Vision

• Reorganization:
– This process refers to raw pixel segmentation

into data groups that represent the design of
a pre-determined configuration.

– Low-level vision tasks include corner
detection, edges, and contours; while high-
level tasks involve semantic segmentation,
which can partly overlap with recognition
processes.

Computer Vision Levels

• Computer vision is divided into three basic
categories that are as following:

• Low-level vision:
– includes process image for feature extraction.

• Intermediate-level vision:
– includes object recognition and 3D scene

Interpretation

• High-level vision:
– includes conceptual description of a scene like

activity, intention and behavior.

Applications

• Autonomous Vehicles:
– Self-driving automobiles use CV systems to gather

information regarding their surroundings and interpret
that data to determine their next actions and behavior.

• Robotic Applications:
– Manufacturing robotic machines using CV, 'view' and

'comprehend' their surroundings to perform their
scheduled tasks.

– In manufacturing, such systems inspect assembly items
to determine faults and tolerance limits - simply by
'looking' at them as they traverse the production line.

Applications

• Image Search and Object Recognition:
– Applications use CV data vision theory to

identify specific objects within digital images,
search through catalogs of product images, and
extract information from photos.

• Facial Recognition:
– Businesses and Government departments use

facial recognition technology (that have
adopted CV) to 'see' precisely what an
individual is trying to gain access to.

Future

• Designing:
–Within the area of home design, designer clothes,

jewelry making, etc., customer systems can
understand verbal or written requirements and
thereby automatically convert these instructions to
digital images for enhanced visualization.

• Describing Medical Images:
– computer vision systems can be trained to identify

more modest human ailments and use digital
imagery in finer detail than human medical
specialists.

Future

• Converting Sign Language: to speech or written text to
assist the deaf and hard of hearing individuals in
interacting with their surroundings. This enhanced
capability can ensure their better integration within
society.

• Surrounding Cognition: Constructing an intelligent
system that 'sees' its surroundings and delivers a
(recorded) spoken narrative. This outcome will be of use
for visually impaired individuals.

• Converting Words to Images: Producing intelligent
systems that convert spoken content to a digital image
may assist people who do not talk and hear.

Loading an image

• Writing code in a specific programming
language? (e.g., Python, Java, JavaScript)

• Working with a particular software or platform?
(e.g., Photoshop, Google Docs, HTML)

• Trying to display an image on a website or
device?

Loading an image

• OpenCV (cv2):
– Popular for real-time computer vision and

image processing.
– Efficient for handling large images and

videos.

Loading an image

• Pillow (PIL):
– Offers simple and intuitive image

manipulation tools.
– Works well for basic image processing tasks.

Loading an image

• Matplotlib:
– Primarily for data visualization, but can also

handle images.
– Integrates well with other scientific Python

libraries.

Loading an image

• scikit-image (skimage):
– Comprehensive image processing library.
– Offers advanced image analysis and

manipulation tools.

Loading an image

• TensorFlow:
– Machine learning framework with image

loading capabilities.
– Useful when working with images for deep

learning tasks.

Loading an image

• Key considerations when choosing a library:
– Purpose: Consider the specific image

processing tasks you need to perform.
– Performance: Evaluate speed and memory

usage for large images or videos.
– Integration: Ensure compatibility with other

libraries in your project.
– Ease of use: Choose a library with a clear and

concise API for your needs.

How images get converted to numbers?

• The transformation of an image into a series of
numbers, like magic, is the foundation of how
computers understand and process visual
information.

Pixel Power

• Imagine your favorite image like a mosaic.
• Each tiny square tile in that mosaic is called a

pixel.
• It's the smallest unit of information in a digital

image, and like a tiny paintbrush, it holds the
color information for that specific point.

Color Decoding

• Computers don't directly understand colors like we do. They
speak the language of numbers. So, each pixel's color needs to
be translated into a numerical value. This depends on the
image format:
– Black and white: Each pixel gets a value between 0 (black)

and 255 (white).
– Grayscale: Similar to black and white, but with more tonal

variations, ranging from 0 to 255, where higher values
represent lighter shades.

– Color (RGB): For vibrant hues, we have red, green, and blue
(RGB) channels. Each channel gets a value between 0 and
255, and these values are combined to create the final color
we see. Think of it like mixing primary colors to paint!

Color Decoding

Grid to numbers

• Now, picture all the pixels lined up neatly,
forming a grid.

• Each pixel has its own numerical value based on
its color.

• This grid of numbers becomes the digital
representation of the image in the computer's
memory.

Beyond the surface

• Simple images might only have one layer of
numbers (like grayscale). But for complex images
with depth and detail, there might be additional
layers:
– Alpha channel: This controls transparency,

allowing pixels to be partially visible or invisible.
– Depth channel: This encodes depth information

for 3D scenes, used in applications like
augmented reality.

Binary Symphony

• Ultimately, all these numbers are stored in the
computer's memory as binary digits, or bits.

• These 0s and 1s are the fundamental language of
computers, and the intricate arrangement of these
bits represents the image in its entirety.

• So, the next time you see a digital image, remember
the hidden symphony of numbers dancing behind
the scenes, allowing computers to perceive and
interpret the visual world just like us!

Grayscale vs. Color Images

• Colour pixels are different from grayscale pixels.
• Colour pixels are RGB, meaning they have three

pieces of information associated with them,
namely the Red, Green and Blue components.

• Grayscale pixels have one component, a gray
tone derived from a graduate scale from black
to white.

• A colour pixel is generally 24-bit (3 × 8-bit), and a
gray pixel is just 8-bit.

Grayscale vs. Color Images

• This basically means that a colour pixel has a
triplet value comprised of 0..255 for each of red,
green and blue components, whereas a
grayscale pixel has a single values 0..255.

• The figure below compares a colour and
grayscale pixel.

• The colour pixel has the R-G-B value 61-80-
136.The grayscale pixel has the value 92.

Grayscale vs. Color Images

• It is easy to convert a pixel from colour to grayscale
(like applying a monochrome filter in a digital
camera).

• The easiest method is simply averaging the three
values of R, G, and B. In the sample above, the
grayscale pixel is actually the converted RGB:
(61+80+136)/3 = 92.

Grayscale vs. Color Images

• Now colour images also contain regions that are
gray in colour – these are 24-bit “gray” pixels, as
opposed to 8-bit grayscale pixels.

• The example below shows a pixel in a grayscale
image, and the corresponding “gray” pixel in the
colour image.

• Grayscale pixels are pure shades of gray. Pure
shades of gray in colour images are often
represented with RGB all having the same value,
e.g. R=137, G=137, B=137.

Grayscale vs. Color Images

Grayscale

• Advantages:
– Smaller file size, making them more efficient

for storage and transmission.
– Simpler and faster to process, making them

suitable for real-time applications.
– Can highlight certain features or textures that

might be masked by color in the original image.
– Can evoke a sense of nostalgia or timelessness.

Grayscale

• Disadvantages:
– Lack the color and vibrancy of the original

image, making it visually less appealing.
– Certain tasks like object recognition might be

more challenging due to the absence of color
information.

– Not suitable for applications requiring
accurate color representation.

Color Images

• Advantages:
– More realistic and visually appealing,

showcasing the full richness of the visual
world.

– Useful for tasks like object recognition and
classification, as color can be a key
discriminant feature.

– Generally preferred for artistic expression
and emotional impact.

Color Images

• Disadvantages:
– Larger file size due to the presence of three

channels.
– Increased processing requirements for

manipulation and analysis.
– Certain features or details might be obscured

due to color dominance.

Which one to choose?

• The importance of color:
– If color is crucial for understanding the content or

conveying emotions, then color images are the
better choice.

• File size and processing requirements:
– If storage space or processing speed is a concern,

grayscale might be a better option.
• Target audience and application:
– Who will be viewing the images and for what

purpose? Consider their preferences and the specific
needs of the application.

Grayscale vs. Color: Summary

• Grayscale images have a single channel
representing intensity, while color images have
three channels (RGB).

• Grayscale conversion is often used for tasks like
edge detection, object recognition, and
reducing processing overhead.

Saving Images

• cv2.imwrite('saved_image.jpg', img)
• img.save('saved_image.png') # PIL
• plt.imsave('saved_image.bmp', img)
• io.imsave('saved_image.tif', img) # scikit
• tf.io.write_file('saved_image.png',

tf.image.encode_png(img))

RGB Channels

• RGB channels," refers to the three primary color
channels that combine to form the vast majority
of digital images and colors we see on screens.

• Imagine each pixel in an image as a tiny
chamber, and within that chamber exist three
separate compartments, each one dedicated to
a specific color:
– Red, Green, and Blue.

RGB Channels

RGB Channels

• Red:
– This channel controls the intensity of the red

component in the pixel's overall color.
– Higher values of red will make the pixel

appear more reddish, while lower values will
bring out other colors or tend towards black.

RGB Channels

• Green:
– Similar to red, the green channel governs the

green component in the pixel's color. Adjusting
its value influences how much green is present,
affecting the overall hue and vibrancy.

• Blue:
– Lastly, the blue channel manages the blue

component, adding depth and coolness to the
pixel's color. Its intensity plays a crucial role in
creating various shades and tones.

RGB Channels: Combination

• Mixing high red and green results in yellow,
while combining red and blue creates purple.

• Balancing all three channels at their maximum
level (255 each) produces pure white, and
setting them to zero yields black.

• The interplay of these values in every pixel
across an image forms the intricate tapestry of
colors and details we perceive.

BGR Channels

• While RGB (Red, Green, Blue) is the most
commonly used and intuitive way to represent
color channels in digital images, some systems,
particularly in computer vision and image
processing, utilize BGR (Blue, Green, Red)
instead.

BGR Channels: Why?

• Hardware Optimization: Some early image processing
hardware was optimized for BGR order, making it the
default for certain libraries and frameworks.

• OpenCV Legacy: OpenCV, a popular library for
computer vision, adopted BGR as its default due to
compatibility with older hardware and software.

• Channel Interpretation: While the interpretation of
red, green, and blue remains the same, the order
simply swaps the blue and red channels. Both RGB and
BGR effectively capture the full spectrum of colors.

BGR Channels: Understanding

• While BGR might seem unfamiliar at first, knowing
its existence and potential reasons for usage is
crucial when working with computer vision and
image processing libraries.
– Always check the documentation of the specific

library or framework you're using to determine
the default color channel order.

– Be aware of potential conversion needs when
comparing or transferring data between systems
using different conventions.

How to convert?

• OpenCV:
– cv2.cvtColor(img, cv2.COLOR_BGR2RGB) or

cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
• Pillow:
– img.convert('RGB') or img.convert('BGR')

• Matplotlib:
– Similar to Pillow, using the appropriate color

space when saving or displaying the image.

RGB vs. BGR: Function

• Both RGB and BGR represent the same color
information within a pixel.

• They control the intensity of red, green, and
blue components to create the entire spectrum
of colors we see on screens.

RGB vs. BGR: Order

• The key difference lies in the order of the channels.
– RGB: This is the more common and intuitively

understood order in many fields like graphic
design, media, and consumer electronics.

– BGR: This order is primarily used in computer
vision and image processing libraries like
OpenCV, often due to historical conventions and
hardware optimization for early image
processing setups.

RGB vs. BGR: Interplay

• Both RGB and BGR channels work together to
produce vibrant colors.

• Adjusting their values influences the overall hue
and saturation of a pixel.

• Higher values of a specific channel increase its
presence, while lower values bring out other
colors or tend towards black.

RGB vs. BGR: Conversion

• Switching between RGB and BGR is usually
straightforward:
– Most libraries and frameworks offer built-in

functions for conversion, like cv2.cvtColor() in
OpenCV or img.convert() in Pillow.

– Be aware of the default color space used by
the specific library or framework you're
working with.

RGB vs. BGR: Impact

• The choice between RGB and BGR primarily
impacts technical aspects:
– Data compatibility:
• When transferring data between systems

using different conventions, conversion
might be necessary.

– Library-specific code:
• If using BGR-based libraries like OpenCV, be

mindful of color channel order in
calculations and interpretations.

cmap

• In the realm of OpenCV, cmap acts as a magical
paintbrush, enabling you to create captivating
visualizations of images that transcend beyond the
ordinary.

• It's often used with functions like applyColorMap()
to apply different colormaps, each revealing unique
information and enhancing visual perception.

ColorMap

• It's a predefined set of colors that are mapped
to numerical values within an image.

• It acts as a translator, converting numerical data
into visually interpretable colors.

• OpenCV offers a diverse palette of built-in
colormaps, each catering to specific
visualization needs.

ColorMap: Sequential

• Ideal for representing continuous data with a natural
progression of colors.

• Examples:
– Grayscale: Showcases intensity variations in shades of

gray.
– Jet: Progresses from blue to red, often used for

heatmaps and gradients.
– Hot: Emphasizes higher values with a transition from

black to red.
– Bone: Simulates X-ray images with a bone-like

appearance.

ColorMap: Sequential

ColorMap: Diverging

• Designed to highlight both high and low values,
diverging from a central color.

• Examples:
– Coolwarm: Transitions from blue to red, useful

for representing bipolar data.
– Spectral: Spans a wide range of hues, often used

for scientific visualizations.
– Seismic: Employs a seismic-like color scheme

with distinct divisions.

ColorMap: Diverging

ColorMap: Cyclic

• Wraps colors around a circular spectrum, useful for
representing periodic data.

• Examples:
– HSV: Represents Hue, Saturation, and Value,

creating a circular color wheel.
– Rainbow: Mimics a rainbow's spectrum, often

used for categorical data.
– Turbo: Offers a visually balanced colormap with

smooth transitions.

ColorMap: Cyclic

Colormap in matplotlib

• Sequential: Ideal for representing numerical data
with a continuous range, where high and low values
are clearly distinguished. Examples include:
– viridis: Perceptually uniform and widely used for

its visual clarity.
– plasma: Offers a visually pleasing purple-to-

yellow gradient.
– inferno: Emphasizes mid-range values with a

fiery color scheme.

Colormap in matplotlib

• Diverging: Optimized for data with a central neutral
point and values that diverge towards positive and
negative extremes. Examples include:
– RdBu: Transitions from red to blue, effectively

highlighting differences.
– coolwarm: Shifts from cool colors (blue) to warm

colors (red), useful for representing opposing
trends.

Colormap in matplotlib

• Cyclical: Suitable for data with a cyclical nature,
where the highest and lowest values smoothly
blend. Examples include:
– hsv: Cycles through hues, useful for

representing angular quantities.
– twilight: Mimics the colors of twilight, ideal

for periodic data.

Colormap in matplotlib

• Qualitative: Best for categorical data where
different colors represent distinct categories
rather than numerical values. Examples include:
– tab10: Ten distinct colors for representing up

to ten categories.
– Set2: Eight aesthetically pleasing colors for

categorical distinctions.

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 7.4.1.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

@mITuSkillologies @mitu_group

contact@mitu.co.in

@mitu-skillologies @MITUSkillologies

@mituskillologies@mituskillologies

mailto:tushar@tusharkute.com
https://mitu.co.in/
http://tusharkute.com/
mailto:contact@mitu.co.in
https://instagram.com/mitu_skillologies
https://fb.com/MITUSkillologies
https://twitter.com/mitu_group
https://www.linkedin.com/company/mitu-skillologies/
https://youtube.com/MITUSkillologies
https://github.com/mituskillologies/
https://www.kaggle.com/mituskillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

