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Pixel

• In digital imaging, a pixel (short for "picture 
element") is the smallest addressable element in a 
raster image or the smallest addressable element in 
a dot matrix display device. 

• In simpler terms, it's the basic building block of any 
digital image you see on screens, smartphones, 
computers, TVs, etc.



Pixel



Pixel

• Here's a closer look at what makes a pixel tick:

• Color: 
– Each pixel can represent a specific color. 
– This color information is usually stored in three 

channels: red, green, and blue (RGB). 
– By adjusting the intensity of these channels, we 

can create an almost infinite range of colors and 
hues.



Pixel

• Brightness: 
– Pixels can also hold information about their 

brightness, ranging from pure black to pure white. 
This allows for detailed shading and depth in images.

• Resolution: 
– The number of pixels in an image is called its 

resolution. The higher the resolution, the more 
detailed and sharper the image will be. 

– For example, a high-definition image has millions of 
pixels, while a lower-resolution image might only 
have thousands.



Pixel: Why?

• Understanding pixels is crucial because they are the 
foundation of how computers and devices process 
and display visual information. 

• From capturing images with cameras to 
manipulating them in editing software, everything 
revolves around manipulating and interpreting 
these tiny squares of color.



Pixel: Why?

• Here are some additional points to consider:
– Size: 
• Pixels are incredibly small, often measured in 

micrometers. 
• Therefore, the individual pixels are usually not 

visible to the naked eye unless you zoom in 
very close.



Pixel: Why?

• File size: 
– The number of pixels in an image directly affects 

its file size. 
– More pixels mean more information, which 

translates to a larger file.

• Applications: 
– Pixels are used in various fields beyond just 

displaying images, such as computer vision, 
scientific visualization, and medical imaging.



Pixel coordinates

• This is the most fundamental system, with each pixel 
in the image assigned a row and column number. 

• These discrete numbers determine the location of 
each pixel within the image grid.
– Origin: Typically starts at the upper left corner, 

with the first row being 0 and the first column also 
being 0.

– Direction: Rows increase downwards, while 
columns increase rightwards.

– Example: Pixel at row 5, column 3.



Pixel coordinates



Image coordinates

• This system builds upon pixel coordinates but utilizes 
continuous real numbers rather than integers.
– Origin: Can vary depending on the context, but 

often aligns with the pixel coordinate origin 
(upper left corner).

– Units: May be expressed in pixels, millimeters, or 
other units depending on the desired scale and 
application.

– Example: Coordinates (3.2, 5.7) representing a 
point between pixels (3, 5) and (4, 6).



Intrinsic coordinates

• This system defines locations within the image 
based on its intrinsic properties, independent of 
pixel or screen dimensions.
– Origin: Often coincides with the center of the 

image or a specific feature within it.
– Units: Normalized values ranging from 0 to 1 for 

both horizontal and vertical axes.
– Example: Point located at (0.5, 0.8) represents 

the center of the image on the vertical axis and 
80% along the horizontal axis.



World coordinates

• In applications like image registration or scene 
mapping, images might be mapped to real-world 
coordinates.
– Origin: Aligns with the chosen reference point in 

the real world.
– Units: Real-world units like meters, kilometers, or 

geographic coordinates.
– Example: Point at (100, 200) on the image 

corresponds to a location with specific latitude 
and longitude in the real world.



Accessing and Manipulating pixels

• Programming Languages and Libraries:
– Python: Popular libraries like OpenCV, Pillow, and 

Matplotlib offer convenient functions for reading 
and writing pixel values, iterating through pixels, 
and applying transformations.

– C++: OpenCV also provides access to low-level 
image manipulation in C++, suitable for 
performance-critical applications.

– JavaScript: Canvas API can manipulate pixels within 
HTML elements, enabling interactive web 
experiences.



Accessing and Manipulating pixels

• Accessing Pixel Values:
– Indexing: Individual pixels can be accessed by 

their row and column indices, similar to accessing 
elements in a 2D array.

– Slicing: Subsets of pixels can be selected using 
slicing notations to apply operations to specific 
regions.

– Iterating: Loops can be used to iterate through 
all pixels in the image, enabling pixel-by-pixel 
modifications.



Accessing and Manipulating pixels

• Manipulating Pixel Values:
– Changing Color: You can directly assign new RGB 

values to individual pixels or modify channels (red, 
green, blue) to adjust hue, saturation, and brightness.

– Applying Filters: Predefined filters like blur, sharpen, 
or edge detection can be applied to the entire image 
or specific regions to alter its visual appearance.

– Custom Transformations: Custom functions can be 
implemented to process pixel values and achieve 
specific effects, like object detection or color 
quantization.



Accessing and Manipulating pixels

• Important Things to Consider:
– Image Format: Different image formats (e.g., JPEG, 

PNG) have different color representations and 
compression levels, which can affect pixel access and 
manipulation.

– Data Types: Ensure you understand the data types used 
for storing pixel values to avoid errors and unexpected 
behavior.

– Memory Efficiency: Large images can consume 
significant memory during manipulation. Consider 
optimizing algorithms and data structures for 
efficiency.



Accessing and Manipulating by Python

• OpenCV (cv2): 
– Highly efficient for real-time image processing, video 

analysis, and computer vision tasks.

• Pillow (PIL): 
– Simple and intuitive for basic image manipulation 

and editing.

• NumPy: 
– While not specifically for image processing, it 

provides powerful array manipulation capabilities 
that can be applied to images.



Common Manipulations

• Changing pixel values: 
– Assign new values to individual pixels or regions.

• Applying filters: 
– Use mathematical operations or convolutions to modify pixel 

values based on their neighbors.

• Creating masks: 
– Define regions of interest for selective processing.

• Edge detection: 
– Identify boundaries between objects.

• Object segmentation: 
– Isolate specific objects within the image.



Video 

• A video, in its essence, is an electronic medium for 
recording, copying, playing back, broadcasting, and 
displaying moving visual media. 

• In simpler terms, it's a series of consecutive images 
(frames) displayed in rapid succession, creating the 
illusion of movement and capturing a dynamic 
scene.



Video : Components

• Frames: 
– Individual still images that make up the video. Frame 

rate, measured in frames per second (fps), 
determines the smoothness and realism of the 
motion.

• Codec: 
– An algorithm that compresses and decompresses 

video data for efficient storage and transmission. 
Different codecs offer varying levels of compression 
and quality.



Video : Components

• Audio: 
– Optional but often complementary, audio adds 

another layer of information and immersion to 
the video experience.

• Metadata: 
– Additional information about the video, such as 

title, creation date, duration, resolution, etc.



Video : Analysis

• Object tracking: 
– Following objects' movements across frames, 

understanding interactions and trajectories.

• Activity recognition: 
– Classifying human actions like walking, running, 

jumping, or even complex interactions like sports or 
traffic behavior.

• Anomaly detection: 
– Identifying unusual events or deviations from 

expected patterns in video footage.



Video : Understanding

• Optical flow: 
– Estimating the motion of pixels between frames, 

revealing patterns of object movement and scene 
dynamics.

• 3D reconstruction: 
– Building 3D models of scenes from multiple video 

frames, enabling virtual world interactions and robotic 
perception.

• Background subtraction: 
– Identifying foreground objects (e.g., people, vehicles) 

moving against a static background.



Video : Applications

• Video surveillance: 
– Analyzing security footage for anomaly detection, object 

tracking, and intrusion detection.

• Self-driving cars: 
– Processing real-time video to navigate roads, identify 

obstacles, and understand traffic signals.

• Medical imaging: 
– Analyzing medical videos for disease diagnosis, surgical 

planning, and treatment monitoring.

• Sports analytics: 
– Extracting player movements, performance metrics, and 

tactics from game footage.



Video Processing

• Practical
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