
Image and Video Basics

Tushar B. Kute,
http://tusharkute.com

Pixel

• In digital imaging, a pixel (short for "picture
element") is the smallest addressable element in a
raster image or the smallest addressable element in
a dot matrix display device.

• In simpler terms, it's the basic building block of any
digital image you see on screens, smartphones,
computers, TVs, etc.

Pixel

Pixel

• Here's a closer look at what makes a pixel tick:

• Color:
– Each pixel can represent a specific color.
– This color information is usually stored in three

channels: red, green, and blue (RGB).
– By adjusting the intensity of these channels, we

can create an almost infinite range of colors and
hues.

Pixel

• Brightness:
– Pixels can also hold information about their

brightness, ranging from pure black to pure white.
This allows for detailed shading and depth in images.

• Resolution:
– The number of pixels in an image is called its

resolution. The higher the resolution, the more
detailed and sharper the image will be.

– For example, a high-definition image has millions of
pixels, while a lower-resolution image might only
have thousands.

Pixel: Why?

• Understanding pixels is crucial because they are the
foundation of how computers and devices process
and display visual information.

• From capturing images with cameras to
manipulating them in editing software, everything
revolves around manipulating and interpreting
these tiny squares of color.

Pixel: Why?

• Here are some additional points to consider:
– Size:
• Pixels are incredibly small, often measured in

micrometers.
• Therefore, the individual pixels are usually not

visible to the naked eye unless you zoom in
very close.

Pixel: Why?

• File size:
– The number of pixels in an image directly affects

its file size.
– More pixels mean more information, which

translates to a larger file.

• Applications:
– Pixels are used in various fields beyond just

displaying images, such as computer vision,
scientific visualization, and medical imaging.

Pixel coordinates

• This is the most fundamental system, with each pixel
in the image assigned a row and column number.

• These discrete numbers determine the location of
each pixel within the image grid.
– Origin: Typically starts at the upper left corner,

with the first row being 0 and the first column also
being 0.

– Direction: Rows increase downwards, while
columns increase rightwards.

– Example: Pixel at row 5, column 3.

Pixel coordinates

Image coordinates

• This system builds upon pixel coordinates but utilizes
continuous real numbers rather than integers.
– Origin: Can vary depending on the context, but

often aligns with the pixel coordinate origin
(upper left corner).

– Units: May be expressed in pixels, millimeters, or
other units depending on the desired scale and
application.

– Example: Coordinates (3.2, 5.7) representing a
point between pixels (3, 5) and (4, 6).

Intrinsic coordinates

• This system defines locations within the image
based on its intrinsic properties, independent of
pixel or screen dimensions.
– Origin: Often coincides with the center of the

image or a specific feature within it.
– Units: Normalized values ranging from 0 to 1 for

both horizontal and vertical axes.
– Example: Point located at (0.5, 0.8) represents

the center of the image on the vertical axis and
80% along the horizontal axis.

World coordinates

• In applications like image registration or scene
mapping, images might be mapped to real-world
coordinates.
– Origin: Aligns with the chosen reference point in

the real world.
– Units: Real-world units like meters, kilometers, or

geographic coordinates.
– Example: Point at (100, 200) on the image

corresponds to a location with specific latitude
and longitude in the real world.

Accessing and Manipulating pixels

• Programming Languages and Libraries:
– Python: Popular libraries like OpenCV, Pillow, and

Matplotlib offer convenient functions for reading
and writing pixel values, iterating through pixels,
and applying transformations.

– C++: OpenCV also provides access to low-level
image manipulation in C++, suitable for
performance-critical applications.

– JavaScript: Canvas API can manipulate pixels within
HTML elements, enabling interactive web
experiences.

Accessing and Manipulating pixels

• Accessing Pixel Values:
– Indexing: Individual pixels can be accessed by

their row and column indices, similar to accessing
elements in a 2D array.

– Slicing: Subsets of pixels can be selected using
slicing notations to apply operations to specific
regions.

– Iterating: Loops can be used to iterate through
all pixels in the image, enabling pixel-by-pixel
modifications.

Accessing and Manipulating pixels

• Manipulating Pixel Values:
– Changing Color: You can directly assign new RGB

values to individual pixels or modify channels (red,
green, blue) to adjust hue, saturation, and brightness.

– Applying Filters: Predefined filters like blur, sharpen,
or edge detection can be applied to the entire image
or specific regions to alter its visual appearance.

– Custom Transformations: Custom functions can be
implemented to process pixel values and achieve
specific effects, like object detection or color
quantization.

Accessing and Manipulating pixels

• Important Things to Consider:
– Image Format: Different image formats (e.g., JPEG,

PNG) have different color representations and
compression levels, which can affect pixel access and
manipulation.

– Data Types: Ensure you understand the data types used
for storing pixel values to avoid errors and unexpected
behavior.

– Memory Efficiency: Large images can consume
significant memory during manipulation. Consider
optimizing algorithms and data structures for
efficiency.

Accessing and Manipulating by Python

• OpenCV (cv2):
– Highly efficient for real-time image processing, video

analysis, and computer vision tasks.

• Pillow (PIL):
– Simple and intuitive for basic image manipulation

and editing.

• NumPy:
– While not specifically for image processing, it

provides powerful array manipulation capabilities
that can be applied to images.

Common Manipulations

• Changing pixel values:
– Assign new values to individual pixels or regions.

• Applying filters:
– Use mathematical operations or convolutions to modify pixel

values based on their neighbors.

• Creating masks:
– Define regions of interest for selective processing.

• Edge detection:
– Identify boundaries between objects.

• Object segmentation:
– Isolate specific objects within the image.

Video

• A video, in its essence, is an electronic medium for
recording, copying, playing back, broadcasting, and
displaying moving visual media.

• In simpler terms, it's a series of consecutive images
(frames) displayed in rapid succession, creating the
illusion of movement and capturing a dynamic
scene.

Video : Components

• Frames:
– Individual still images that make up the video. Frame

rate, measured in frames per second (fps),
determines the smoothness and realism of the
motion.

• Codec:
– An algorithm that compresses and decompresses

video data for efficient storage and transmission.
Different codecs offer varying levels of compression
and quality.

Video : Components

• Audio:
– Optional but often complementary, audio adds

another layer of information and immersion to
the video experience.

• Metadata:
– Additional information about the video, such as

title, creation date, duration, resolution, etc.

Video : Analysis

• Object tracking:
– Following objects' movements across frames,

understanding interactions and trajectories.

• Activity recognition:
– Classifying human actions like walking, running,

jumping, or even complex interactions like sports or
traffic behavior.

• Anomaly detection:
– Identifying unusual events or deviations from

expected patterns in video footage.

Video : Understanding

• Optical flow:
– Estimating the motion of pixels between frames,

revealing patterns of object movement and scene
dynamics.

• 3D reconstruction:
– Building 3D models of scenes from multiple video

frames, enabling virtual world interactions and robotic
perception.

• Background subtraction:
– Identifying foreground objects (e.g., people, vehicles)

moving against a static background.

Video : Applications

• Video surveillance:
– Analyzing security footage for anomaly detection, object

tracking, and intrusion detection.

• Self-driving cars:
– Processing real-time video to navigate roads, identify

obstacles, and understand traffic signals.

• Medical imaging:
– Analyzing medical videos for disease diagnosis, surgical

planning, and treatment monitoring.

• Sports analytics:
– Extracting player movements, performance metrics, and

tactics from game footage.

Video Processing

• Practical

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 7.4.1.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

@mITuSkillologies @mitu_group

contact@mitu.co.in

@mitu-skillologies @MITUSkillologies

@mituskillologies@mituskillologies

mailto:tushar@tusharkute.com
https://mitu.co.in/
http://tusharkute.com/
mailto:contact@mitu.co.in
https://instagram.com/mitu_skillologies
https://fb.com/MITUSkillologies
https://twitter.com/mitu_group
https://www.linkedin.com/company/mitu-skillologies/
https://youtube.com/MITUSkillologies
https://github.com/mituskillologies/
https://www.kaggle.com/mituskillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

