

Image Transformation

Tushar B. Kute, http://tusharkute.com

Image Translation

- Image translation in computer vision refers to the process of transforming an image into another image while preserving certain visual characteristics or changing them in a controlled manner.
- This transformation can involve various manipulations

Image Translation

- Style transfer: Applying the artistic style of one image to another (e.g., making a photo look like a watercolor painting).
- Domain adaptation: Adapting images from one domain (e.g., satellite images) to another domain (e.g., street view images).
- Super-resolution: Generating a higher-resolution image from a lower-resolution one.
- Inpainting: Filling in missing or damaged parts of an image.
- Image colorization: Adding color to a grayscale image.

Image Translation: Technologies

- Deep learning:
 - Deep neural networks, particularly Generative Adversarial Networks (GANs), are widely used for image translation tasks. These networks learn the relationship between source and target images and can generate realistic results.
- Convolutional neural networks (CNNs):
 - CNNs excel at extracting spatial features from images, making them a suitable choice for tasks like style transfer and domain adaptation.
- Autoencoders:
 - These neural networks learn a compressed representation of an image and can be used for tasks like image denoising and super-resolution.

Image Translation: Applications

- Artistic image editing: Users can apply different artistic styles to their photos for creative expression.
- Medical imaging: Image translation can be used to enhance medical images for better diagnosis and treatment planning.
- Autonomous vehicles: Image translation can help self-driving cars adapt to different weather conditions and environments.
- Video game development: Image translation can be used to create game assets with different styles and textures.
- Image restoration: Damaged or old photos can be repaired and restored using image translation techniques.

- In OpenCV, a translation matrix is a 2x3 matrix used to perform various kinds of image transformations, including translating an image, applying affine transformations, and adjusting perspective.
- It plays a crucial role in manipulating images and achieving desired visual effects.

- Here's a breakdown of its elements:
 - 2 rows: Represent the transformation applied to the horizontal (x) and vertical (y) dimensions of the image.
 - 3 columns: Represent the original coordinates of a point in the image (x, y, 1) and the resulting transformed coordinates after applying the matrix.

- The specific values within the matrix determine the nature of the transformation:
- First row:
 - [1, 0, Tx]: Shifts the image Tx pixels to the right while preserving its height.
 - [0, 1, Ty]: Shifts the image Ty pixels down while preserving its width.
- Second row:
 - A combination of values in both columns can achieve more complex translations and tilts.

- Let's see an example of translating an image by 50 pixels to the right:
- translation_matrix = np.float32([[1, 0, 50], [0, 1, 0]])
- Here, the [1, 0, 50] row indicates no scaling or shearing in the horizontal direction but a shift of 50 pixels to the right. The second row [0, 1, 0] signifies no change in the vertical dimension.
- OpenCV provides functions like cv2.warpAffine and cv2.warpPerspective that take this translation matrix as an input and apply the corresponding transformation to the image.

Translation

Practical

Image Rotation

- Image rotation refers to the process of turning an image around a fixed point, resulting in a new image with the original information rearranged in a different orientation.
- This is a common operation in image processing used for various purposes.

Image Rotation: Why?

- Correcting camera tilt: Rotating an image to compensate for the camera being tilted during capture results in a more natural-looking perspective.
- Alignment and organization: Images can be rotated to align features of interest or organize them in a specific layout.
- Data augmentation: Image rotation can be used as part of data augmentation techniques to increase the diversity of training data for machine learning models.
- Artistic effects: Rotating images can create interesting visual effects and distortions for artistic expression.

Image Rotation: Types

- There are two main types of image rotation:
 - Rigid rotation: The entire image rotates around a fixed center point, maintaining its original shape and proportions. This is the most common type of rotation.
 - Affine rotation: This involves a combination of rotation and shear, altering the image's shape and proportions.

Image Rotation: How

- Rotation Matrix:
 - A rotation matrix, denoted by R, is a 2x2 matrix that encodes the specific rotation angle and direction. The specific values within the matrix depend on the angle and axis of rotation. Here's a general form:

• where theta is the rotation angle in radians.

Image Rotation: How

- Applying the Transformation:
 - To rotate a point (x, y) by applying the rotation matrix R, we perform the following matrix multiplication:

(rotated_x, rotated_y) = R * (x, y)

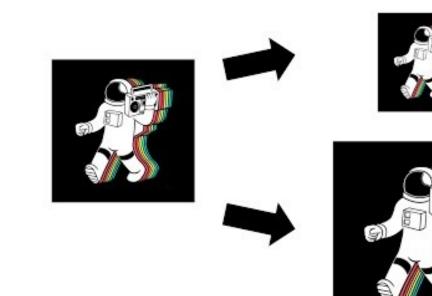
 This multiplication results in a new vector (rotated_x, rotated_y) representing the pixel's location after the rotation.

Image Rotation: How

- Rotating the Entire Image:
 - By applying the rotation matrix to each pixel's vector using the above equation, we effectively rotate the entire image around its center.
 - This process involves iterating through each pixel, performing the multiplication, and updating its coordinates based on the rotated values.

Image Rotation

Practical


Image Resampling/Rescaling/Resizing

- Image Resizing is the process of increasing or decreasing the size of an image.
- What does it mean?
 - In terms of a 2-dimensional image, more specifically, it means scaling up/down the width and height of an image by computing the pixel values for the newer(or resized) image.

Image Resampling/Rescaling/Resizing

Image Resizing: How?

- Interpolation: This is the primary step in resizing, where missing pixels are estimated based on surrounding values.
 Popular methods include:
- Nearest neighbor: Simplest method, assigns the value of the nearest existing pixel to the new pixel. Good for preserving sharp edges but can appear blocky.
- Bilinear interpolation: Averages the values of the four nearest pixels, producing smoother results but potentially blurring image details.
- Bicubic interpolation: Uses a weighted average of sixteen surrounding pixels, offering higher quality resizing but computationally more expensive.

Image Resizing: How?

- Transformation matrices: Linear algebra comes into play here. Resizing can be viewed as applying a transformation to the image coordinates. This can be achieved through:
 - Scaling: A scaling matrix multiplies the original coordinates by a factor (e.g., scale by 0.5 for half size), effectively shrinking or enlarging the image.
 - Shearing: Less commonly used, shearing matrices can tilt the image horizontally or vertically.

Image Resizing

Practical

Image Flipping

- Image flipping in computer vision refers to the process of mirroring an image along a specific axis (horizontal or vertical) or both, resulting in a new image with the original information rearranged around the chosen axis.
- It's a common image manipulation technique with various applications, including:
 - Data augmentation
 - Symmetry Detection
 - Visual effects and artistic expression

Image Flipping

• Types of image flipping:

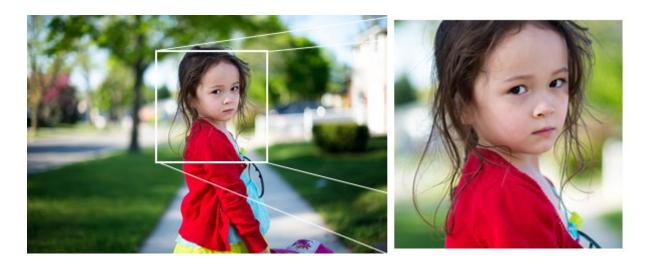

- Horizontal flip: Mirrors the image left to right, reversing the positions of objects and features.
- Vertical flip: Mirrors the image top to bottom, inverting the orientation of objects and features.
- Diagonal flip: Flips the image along the diagonal axis, creating a mirrored version rotated by 45 degrees.

Image Cropping

 Image cropping in computer vision refers to the process of selecting and extracting a specific region of interest (ROI) from an image and discarding the remaining parts.

Image Cropping: Why?

- Object detection and recognition: After identifying an object in an image, cropping can focus on the object for better analysis or classification.
- Background removal: Cropping can isolate the subject of interest from distracting backgrounds, improving visual focus and processing.
- Data augmentation: Cropping images from larger ones creates multiple variations for training machine learning models, enhancing their robustness and generalizability.
- Visual composition and editing: Cropping can improve the composition of an image by removing unwanted elements or emphasizing specific features.

Image Cropping: How?

- Bounding boxes: Defining a rectangular box around the desired area is a simple and efficient method. Libraries like OpenCV provide functions for extracting ROI based on bounding box coordinates.
- Polygons: For irregular shapes, defining a polygon with multiple vertices offers more flexibility in selecting the ROI.
- Masking: Creating a mask image where the ROI is white and the rest is black allows precise extraction of the desired area.

Image Cropping: Techniques

- Content-aware cropping: Algorithms can analyze the image content and automatically suggest optimal cropping regions based on saliency or object detection.
- Adaptive cropping: The ROI can be dynamically adjusted based on specific criteria, such as maximizing the presence of objects or minimizing empty space.

Image Cropping

Practical

- Shearing transformation in computer vision is a specific type of geometric transformation that distorts an image by tilting it along a specific axis.
- This creates a slanting effect, as if layers of the image are sliding past each other in one direction.
- Here are some key points about shearing transformation:
- Types of shearing:
 - X-shearing: Tilts the image along the x-axis, causing vertical lines to slant.
 - Y-shearing: Tilts the image along the y-axis, causing horizontal lines to slant.

- Effect on objects:
 - Shearing alters the shape and size of objects in the image.
 - It can be used to correct for slight rotations or introduce specific distortions for artistic effects or data augmentation.

• Applications:

- Correcting text slant: Can be used to straighten tilted text in scanned documents.
- Data augmentation: Creating variations of images by introducing controlled shearing for training machine learning models.
- Special effects: Used in image editing software to create artistic distortions or warping effects.

Practical

Affine Transformation

- Affine transformations modify the spatial arrangement of pixels in an image by:
 - Scaling: Uniformly or non-uniformly changing the size of objects.
 - Translation: Shifting objects to different positions.
 - Rotation: Rotating objects around a fixed point.
 - Shearing: Tilting objects along an axis, causing a slanted distortion.

Affine Transformation: Properties

- Line preservation:
 - Lines in the original image remain lines after the transformation, although their length and orientation might change.
- Parallel lines:
 - Parallel lines in the original image remain parallel after the transformation.
- Ratios preserved:
 - Ratios of distances between points are preserved, but not necessarily actual distances.

Affine Transformation

Practical

Thank you

This presentation is created using LibreOffice Impress 7.4.1.2, can be used freely as per GNU General Public License

kaggle @mituskillologies Web Resources https://mitu.co.in http://tusharkute.com @mituskillologies

contact@mitu.co.in
tushar@tusharkute.com