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Kernel 

• In computer vision, a kernel, also known as a 
convolution matrix or mask, is a small matrix used 
to manipulate images in various ways. 

• Think of it as a tiny window that "slides" across the 
image, performing calculations at each pixel based 
on the surrounding pixels and the kernel itself. 

• These calculations can achieve various effects, 
making kernels incredibly versatile tools.



Kernel : Functions

• Smoothing: Blurs images by averaging surrounding pixel 
values (e.g., average kernel).

• Sharpening: Enhances edges by emphasizing differences 
between neighboring pixels (e.g., Laplacian kernel).

• Edge detection: Highlights edges by identifying large 
differences in pixel values (e.g., Sobel kernels).

• Embossing: Creates a 3D effect by highlighting edges 
with shadows and highlights (e.g., embossing kernel).

• Feature extraction: Extracting specific features from the 
image like lines, textures, or corners (e.g., custom 
kernels).



Kernel : Properties

• Properties:
– Size: Typically small matrices, like 3x3 or 5x5, 

though larger kernels exist for specific tasks.
– Values: Each element in the kernel represents a 

weight applied to the corresponding pixel during 
calculation.

– Convolution: The process of sliding the kernel 
across the image and performing element-wise 
multiplication with the underlying image pixels.



Kernel : Applications

• Image processing: 
– Preprocessing images for tasks like object 

detection, image recognition, and segmentation.

• Deep learning: 
– Convolutional neural networks rely heavily on 

kernels for feature extraction and image 
classification.



Kernel : Example

• An image kernel is a small matrix used to apply 
effects like the ones you might find in Photoshop 
or Gimp, such as blurring, sharpening, outlining or 
embossing. 

• They're also used in machine learning for 'feature 
extraction', a technique for determining the most 
important portions of an image.



Kernel : Example

• To see how they work, let's start by inspecting a 
black and white image. 

• The matrix on the left contains numbers, between 0 
and 255, which each correspond to the brightness 
of one pixel in a picture of a face. 

• The large, granulated picture has been blown up to 
make it easier to see; the last image is the "real" 
size.



Kernel : Example



Kernel : Example



Convolutional Operator

• The convolution operator, often denoted by an 
asterisk (*), is a powerful mathematical tool used in 
various fields, including signal processing, image 
processing, and machine learning. 

• It essentially blends two functions together by 
sliding one of them over the other and multiplying 
corresponding elements before summing the 
products. 

• This process extracts specific features from the 
input signals or images.



Convolutional Operator

• Imagine you have two signals:
– Signal 1: Represents a song's melody played on a 

piano.
– Signal 2: Represents a filter that highlights higher 

frequencies.

• By convolving these signals, you're essentially asking: 
"How much of the high-frequency content is present 
in the melody at each point in time?". 

• The resulting signal would emphasize the high-pitched 
notes in the melody, revealing its prominent features.



Convolutional Operator

• Image 1: A photograph with various textures and 
edges.

• Kernel 1: A small matrix with positive values in the 
center and negative values around it (edge 
detection kernel).

• Convolving the image with this kernel would 
enhance the edges and boundaries within the 
image, making them appear sharper and more 
prominent.



Averaging Kernel

• In the world of image processing, averaging kernels, also known 
as mean filters, play a crucial role in smoothing images and 
reducing noise. They achieve this by blending the intensities of 
neighboring pixels, resulting in a more uniform and visually 
pleasing image.

• Understanding the Principle:
– Imagine an averaging kernel as a tiny window sliding across 

your image. 
– At each pixel, it multiplies the corresponding pixel intensity 

with its weight (usually all positive and equal) and then sums 
the results. 

– This new average value becomes the output pixel in the 
processed image.



Averaging Kernel: Benefits

• Noise reduction: Blurs out random pixel variations, 
making the image appear smoother and less 
"grainy."

• Edge and detail preservation: Unlike some 
aggressive smoothing filters, averaging kernels can 
retain important edges and details by not 
aggressively blurring them.

• Wide range of applications: Useful for pre-
processing images for tasks like feature extraction, 
segmentation, and compression.



Averaging Kernel

• Practical 



Gaussian Kernel

• The Gaussian kernel, named after the famous 
mathematician Carl Friedrich Gauss, takes 
inspiration from the bell curve to bring elegance 
and precision to the world of image processing. 

• Just like the gentle slope of a Gaussian distribution, 
this special type of kernel smooths images 
beautifully, attenuating noise while preserving 
essential details.



Gaussian Kernel

• The Gaussian kernel, also known as the Gaussian 
filter, works by applying a weighted average to the 
pixels in a specific neighborhood around each pixel 
in an image. 

• This weighting is based on the Gaussian 
distribution, which gives higher weights to closer 
pixels and lower weights to farther pixels. 

• This creates a smooth blurring effect while 
preserving edges.



Gaussian Kernel: Working

• Gaussian function:
– Imagine a bell-shaped curve, where the highest 

point is in the center and the values gradually 
decrease towards the sides. This curve 
represents the Gaussian function.

– The distance from the center determines the 
weight assigned to each pixel. Closer pixels 
(closer to the center) have higher weights, 
contributing more to the final value.



Gaussian Kernel: Working

• Kernel creation:
– A small square matrix represents the kernel, 

typically odd-sized (e.g., 3x3, 5x5).
– Each element in the kernel corresponds to a 

weight based on its position relative to the 
center.

– The center element usually has the highest 
weight, and weights decrease as you move 
farther away.



Gaussian Kernel: Working

• Convolution:
– The kernel is "slided" over the image, one pixel 

at a time.
– At each position, the kernel elements are 

multiplied by the corresponding pixel values in 
the image.

– These products are then summed up, giving a 
weighted average for the target pixel in the 
filtered image.



Gaussian Kernel: Working

• Blurring effect:
– Pixels with nearby neighbors of similar values 

will see smaller changes in their intensity after 
filtering.

– Pixels with significantly different neighbors will 
be more affected, leading to a smoothing effect.

– Edges, defined by sharp changes in intensity, are 
partially preserved because the weights drop off 
quickly for distant pixels.



Gaussian Kernel: Features

• Smooths noise: 
– By averaging pixel values, the Gaussian kernel 

reduces random variations in intensity.

• Preserves edges: 
– The rapid weight drop-off with distance helps 

maintain sharp transitions between regions.

• Adjustable blur: 
– The kernel size and sigma (standard deviation) 

control the blur strength. Larger sizes and higher 
sigma lead to stronger blurring.



Gaussian Kernel

• Practical 



Median Kernel

• The median filter is a non-linear digital filtering 
technique, often used to remove noise from an 
image or signal. 

• Such noise reduction is a typical pre-processing 
step to improve the results of later processing (for 
example, edge detection on an image). 

• Median filtering is very widely used in digital image 
processing because, under certain conditions, it 
preserves edges while removing noise, also having 
applications in signal processing.



Median Filter

• Non-linear filter: 
– Unlike Gaussian filtering, which uses weighted averages, 

median filtering replaces a pixel's value with the median 
value of its surrounding pixels within a defined 
neighborhood (similar to a kernel).

• Noise reduction: 
– It's particularly effective at removing "salt and pepper" 

noise, characterized by isolated bright or dark pixels.

• Edge preservation: 
– Since it replaces values based on local statistics, it tends to 

preserve edges better than Gaussian filtering, making it 
useful for scenarios where edge information is crucial.



Median Filter



Median Filter vs Gaussian

• The choice between Gaussian and median filtering 
depends on your specific needs:
– Gaussian filter: Use it for general noise reduction 

while maintaining some edge detail.
– Median filter: Use it for removing impulse noise 

while preserving sharp edges.



Median Filter : Working

• Neighborhood definition:
– Imagine a small square or rectangular window 

(similar to a kernel) sliding over the image, one 
pixel at a time. This window represents the 
neighborhood used for calculations.

– The size of the neighborhood is critical. A larger 
window helps reduce noise but might blur edges, 
while a smaller window preserves edges but 
might be less effective at noise reduction.



Median Filter : Working

• Sorting pixel values:
– Within each neighborhood, the filter collects the 

intensity values of all pixels.
– These values are then sorted in ascending or 

descending order, creating a ranked list.



Median Filter : Working

• Median selection:
– The median value from the sorted list is chosen. 

The median represents the "middle" value, 
unaffected by extreme outliers like noise spikes.

– This median value replaces the original pixel 
value in the center of the neighborhood, 
effectively smoothing out the image.



Median Filter : Working

• Sliding window approach:
– The process repeats as the window slides across 

the entire image, pixel by pixel.
– Each pixel is replaced with the median of its local 

neighborhood, resulting in a denoised image.



Median Filter 

• Practical 



Bilateral Filter

• The bilateral filter is a powerful image processing 
tool that effectively removes noise while 
preserving edges. 

• It achieves this by incorporating both spatial 
proximity and intensity similarity when considering 
neighboring pixels. 



Bilateral Filter



Bilateral Filter

• Here, the normalization factor and the range weight are 
new terms added to the previous equation. \sigma_s  
denotes the spatial extent of the kernel, i.e. the size of 
the neighborhood, and \sigma_r  denotes the minimum 
amplitude of an edge. 

• It ensures that only those pixels with intensity values 
similar to that of the central pixel are considered for 
blurring, while sharp intensity changes are maintained. 

• The smaller the value of \sigma_r  , the sharper the 
edge. As \sigma_r  tends to infinity, the equation tends 
to a Gaussian blur.



Bilateral Filter: How it works?

• Combining Factors:
– The bilateral filter calculates a weighted average of a 

pixel's neighbors, but the weights depend on two 
factors:

• Spatial proximity: 
– Similar to other filters, pixels closer to the target pixel 

receive higher weights. This ensures local smoothing.

• Intensity similarity: 
– Pixels with similar intensity values to the target pixel 

also receive higher weights. This helps preserve edges 
and textures.



Bilateral Filter: How it works?

• Gaussian Weights:
– Both the spatial and intensity similarity are 

represented by Gaussian functions:
– Spatial weight: Decreases with distance from the 

target pixel.
– Intensity weight: Decreases with the difference 

in intensity between the neighbor and the target 
pixel.



Bilateral Filter: How it works?

• Weighted Average:
– Multiplying these two weights for each neighbor 

gives the final weight.
– Summing the weighted intensities of the 

neighbors provides the filtered pixel value.



Bilateral Filter: How it works?

• Balancing Smoothness and Edge Preservation:
– The standard deviations of the Gaussian 

functions control the balance between spatial 
and intensity similarity.

– Larger spatial standard deviation leads to more 
smoothing.

– Larger intensity standard deviation allows for 
larger intensity differences, preserving more 
edges.



Bilateral Filter

• Practical 
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