
Smoothing and Blurring

Tushar B. Kute,
http://tusharkute.com

Kernel

• In computer vision, a kernel, also known as a
convolution matrix or mask, is a small matrix used
to manipulate images in various ways.

• Think of it as a tiny window that "slides" across the
image, performing calculations at each pixel based
on the surrounding pixels and the kernel itself.

• These calculations can achieve various effects,
making kernels incredibly versatile tools.

Kernel : Functions

• Smoothing: Blurs images by averaging surrounding pixel
values (e.g., average kernel).

• Sharpening: Enhances edges by emphasizing differences
between neighboring pixels (e.g., Laplacian kernel).

• Edge detection: Highlights edges by identifying large
differences in pixel values (e.g., Sobel kernels).

• Embossing: Creates a 3D effect by highlighting edges
with shadows and highlights (e.g., embossing kernel).

• Feature extraction: Extracting specific features from the
image like lines, textures, or corners (e.g., custom
kernels).

Kernel : Properties

• Properties:
– Size: Typically small matrices, like 3x3 or 5x5,

though larger kernels exist for specific tasks.
– Values: Each element in the kernel represents a

weight applied to the corresponding pixel during
calculation.

– Convolution: The process of sliding the kernel
across the image and performing element-wise
multiplication with the underlying image pixels.

Kernel : Applications

• Image processing:
– Preprocessing images for tasks like object

detection, image recognition, and segmentation.

• Deep learning:
– Convolutional neural networks rely heavily on

kernels for feature extraction and image
classification.

Kernel : Example

• An image kernel is a small matrix used to apply
effects like the ones you might find in Photoshop
or Gimp, such as blurring, sharpening, outlining or
embossing.

• They're also used in machine learning for 'feature
extraction', a technique for determining the most
important portions of an image.

Kernel : Example

• To see how they work, let's start by inspecting a
black and white image.

• The matrix on the left contains numbers, between 0
and 255, which each correspond to the brightness
of one pixel in a picture of a face.

• The large, granulated picture has been blown up to
make it easier to see; the last image is the "real"
size.

Kernel : Example

Kernel : Example

Convolutional Operator

• The convolution operator, often denoted by an
asterisk (*), is a powerful mathematical tool used in
various fields, including signal processing, image
processing, and machine learning.

• It essentially blends two functions together by
sliding one of them over the other and multiplying
corresponding elements before summing the
products.

• This process extracts specific features from the
input signals or images.

Convolutional Operator

• Imagine you have two signals:
– Signal 1: Represents a song's melody played on a

piano.
– Signal 2: Represents a filter that highlights higher

frequencies.

• By convolving these signals, you're essentially asking:
"How much of the high-frequency content is present
in the melody at each point in time?".

• The resulting signal would emphasize the high-pitched
notes in the melody, revealing its prominent features.

Convolutional Operator

• Image 1: A photograph with various textures and
edges.

• Kernel 1: A small matrix with positive values in the
center and negative values around it (edge
detection kernel).

• Convolving the image with this kernel would
enhance the edges and boundaries within the
image, making them appear sharper and more
prominent.

Averaging Kernel

• In the world of image processing, averaging kernels, also known
as mean filters, play a crucial role in smoothing images and
reducing noise. They achieve this by blending the intensities of
neighboring pixels, resulting in a more uniform and visually
pleasing image.

• Understanding the Principle:
– Imagine an averaging kernel as a tiny window sliding across

your image.
– At each pixel, it multiplies the corresponding pixel intensity

with its weight (usually all positive and equal) and then sums
the results.

– This new average value becomes the output pixel in the
processed image.

Averaging Kernel: Benefits

• Noise reduction: Blurs out random pixel variations,
making the image appear smoother and less
"grainy."

• Edge and detail preservation: Unlike some
aggressive smoothing filters, averaging kernels can
retain important edges and details by not
aggressively blurring them.

• Wide range of applications: Useful for pre-
processing images for tasks like feature extraction,
segmentation, and compression.

Averaging Kernel

• Practical

Gaussian Kernel

• The Gaussian kernel, named after the famous
mathematician Carl Friedrich Gauss, takes
inspiration from the bell curve to bring elegance
and precision to the world of image processing.

• Just like the gentle slope of a Gaussian distribution,
this special type of kernel smooths images
beautifully, attenuating noise while preserving
essential details.

Gaussian Kernel

• The Gaussian kernel, also known as the Gaussian
filter, works by applying a weighted average to the
pixels in a specific neighborhood around each pixel
in an image.

• This weighting is based on the Gaussian
distribution, which gives higher weights to closer
pixels and lower weights to farther pixels.

• This creates a smooth blurring effect while
preserving edges.

Gaussian Kernel: Working

• Gaussian function:
– Imagine a bell-shaped curve, where the highest

point is in the center and the values gradually
decrease towards the sides. This curve
represents the Gaussian function.

– The distance from the center determines the
weight assigned to each pixel. Closer pixels
(closer to the center) have higher weights,
contributing more to the final value.

Gaussian Kernel: Working

• Kernel creation:
– A small square matrix represents the kernel,

typically odd-sized (e.g., 3x3, 5x5).
– Each element in the kernel corresponds to a

weight based on its position relative to the
center.

– The center element usually has the highest
weight, and weights decrease as you move
farther away.

Gaussian Kernel: Working

• Convolution:
– The kernel is "slided" over the image, one pixel

at a time.
– At each position, the kernel elements are

multiplied by the corresponding pixel values in
the image.

– These products are then summed up, giving a
weighted average for the target pixel in the
filtered image.

Gaussian Kernel: Working

• Blurring effect:
– Pixels with nearby neighbors of similar values

will see smaller changes in their intensity after
filtering.

– Pixels with significantly different neighbors will
be more affected, leading to a smoothing effect.

– Edges, defined by sharp changes in intensity, are
partially preserved because the weights drop off
quickly for distant pixels.

Gaussian Kernel: Features

• Smooths noise:
– By averaging pixel values, the Gaussian kernel

reduces random variations in intensity.

• Preserves edges:
– The rapid weight drop-off with distance helps

maintain sharp transitions between regions.

• Adjustable blur:
– The kernel size and sigma (standard deviation)

control the blur strength. Larger sizes and higher
sigma lead to stronger blurring.

Gaussian Kernel

• Practical

Median Kernel

• The median filter is a non-linear digital filtering
technique, often used to remove noise from an
image or signal.

• Such noise reduction is a typical pre-processing
step to improve the results of later processing (for
example, edge detection on an image).

• Median filtering is very widely used in digital image
processing because, under certain conditions, it
preserves edges while removing noise, also having
applications in signal processing.

Median Filter

• Non-linear filter:
– Unlike Gaussian filtering, which uses weighted averages,

median filtering replaces a pixel's value with the median
value of its surrounding pixels within a defined
neighborhood (similar to a kernel).

• Noise reduction:
– It's particularly effective at removing "salt and pepper"

noise, characterized by isolated bright or dark pixels.

• Edge preservation:
– Since it replaces values based on local statistics, it tends to

preserve edges better than Gaussian filtering, making it
useful for scenarios where edge information is crucial.

Median Filter

Median Filter vs Gaussian

• The choice between Gaussian and median filtering
depends on your specific needs:
– Gaussian filter: Use it for general noise reduction

while maintaining some edge detail.
– Median filter: Use it for removing impulse noise

while preserving sharp edges.

Median Filter : Working

• Neighborhood definition:
– Imagine a small square or rectangular window

(similar to a kernel) sliding over the image, one
pixel at a time. This window represents the
neighborhood used for calculations.

– The size of the neighborhood is critical. A larger
window helps reduce noise but might blur edges,
while a smaller window preserves edges but
might be less effective at noise reduction.

Median Filter : Working

• Sorting pixel values:
– Within each neighborhood, the filter collects the

intensity values of all pixels.
– These values are then sorted in ascending or

descending order, creating a ranked list.

Median Filter : Working

• Median selection:
– The median value from the sorted list is chosen.

The median represents the "middle" value,
unaffected by extreme outliers like noise spikes.

– This median value replaces the original pixel
value in the center of the neighborhood,
effectively smoothing out the image.

Median Filter : Working

• Sliding window approach:
– The process repeats as the window slides across

the entire image, pixel by pixel.
– Each pixel is replaced with the median of its local

neighborhood, resulting in a denoised image.

Median Filter

• Practical

Bilateral Filter

• The bilateral filter is a powerful image processing
tool that effectively removes noise while
preserving edges.

• It achieves this by incorporating both spatial
proximity and intensity similarity when considering
neighboring pixels.

Bilateral Filter

Bilateral Filter

• Here, the normalization factor and the range weight are
new terms added to the previous equation. \sigma_s
denotes the spatial extent of the kernel, i.e. the size of
the neighborhood, and \sigma_r denotes the minimum
amplitude of an edge.

• It ensures that only those pixels with intensity values
similar to that of the central pixel are considered for
blurring, while sharp intensity changes are maintained.

• The smaller the value of \sigma_r , the sharper the
edge. As \sigma_r tends to infinity, the equation tends
to a Gaussian blur.

Bilateral Filter: How it works?

• Combining Factors:
– The bilateral filter calculates a weighted average of a

pixel's neighbors, but the weights depend on two
factors:

• Spatial proximity:
– Similar to other filters, pixels closer to the target pixel

receive higher weights. This ensures local smoothing.

• Intensity similarity:
– Pixels with similar intensity values to the target pixel

also receive higher weights. This helps preserve edges
and textures.

Bilateral Filter: How it works?

• Gaussian Weights:
– Both the spatial and intensity similarity are

represented by Gaussian functions:
– Spatial weight: Decreases with distance from the

target pixel.
– Intensity weight: Decreases with the difference

in intensity between the neighbor and the target
pixel.

Bilateral Filter: How it works?

• Weighted Average:
– Multiplying these two weights for each neighbor

gives the final weight.
– Summing the weighted intensities of the

neighbors provides the filtered pixel value.

Bilateral Filter: How it works?

• Balancing Smoothness and Edge Preservation:
– The standard deviations of the Gaussian

functions control the balance between spatial
and intensity similarity.

– Larger spatial standard deviation leads to more
smoothing.

– Larger intensity standard deviation allows for
larger intensity differences, preserving more
edges.

Bilateral Filter

• Practical

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 7.4.1.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

@mITuSkillologies @mitu_group

contact@mitu.co.in

@mitu-skillologies @MITUSkillologies

@mituskillologies@mituskillologies

mailto:tushar@tusharkute.com
https://mitu.co.in/
http://tusharkute.com/
mailto:contact@mitu.co.in
https://instagram.com/mitu_skillologies
https://fb.com/MITUSkillologies
https://twitter.com/mitu_group
https://www.linkedin.com/company/mitu-skillologies/
https://youtube.com/MITUSkillologies
https://github.com/mituskillologies/
https://www.kaggle.com/mituskillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

