
Edge and Contour detection

Tushar B. Kute,
http://tusharkute.com

Edges

• Edges are significant local changes of intensity in a
digital image.

• An edge can be defined as a set of connected pixels
that forms a boundary between two disjoint
regions.

• There are three types of edges:
– Horizontal edges
– Vertical edges
– Diagonal edges

Edge Detection

• Edge Detection is a method of segmenting an image into
regions of discontinuity. It is a widely used technique in
digital image processing like
– pattern recognition
– image morphology
– feature extraction

• Edge detection allows users to observe the features of an
image for a significant change in the gray level. This texture
indicating the end of one region in the image and the
beginning of another.

• It reduces the amount of data in an image and preserves the
structural properties of an image.

Edge Detection

• Edge Detection Operators are of two types:
– Gradient –
• based operator which computes first-order

derivations in a digital image like, Sobel
operator, Prewitt operator, Robert operator

– Gaussian –
• based operator which computes second-order

derivations in a digital image like, Canny edge
detector, Laplacian of Gaussian

Edge Detection

Edge Detection: How?

• Image smoothing: The image is first smoothed to reduce
noise and enhance edges. This is often done using filters
like Gaussian blur.

• Gradient calculation: The gradient of the image is
calculated, which measures the change in intensity
between neighboring pixels. Edges are typically located
where the gradient magnitude is high.

• Edge thresholding: A threshold is applied to the gradient
magnitude to identify pixels that are likely to be part of an
edge.

• Edge linking: The identified edge pixels are connected to
form continuous edge lines.

Edge Detection?

Sobel Edge Detection

• It is a discrete differentiation operator. It computes
the gradient approximation of image intensity
function for image edge detection.

• At the pixels of an image, the Sobel operator
produces either the normal to a vector or the
corresponding gradient vector.

• It uses two 3 x 3 kernels or masks which are
convolved with the input image to calculate the
vertical and horizontal derivative approximations
respectively

Sobel Edge Detection

• It uses two 3 x 3 kernels or masks which are
convolved with the input image to calculate the
vertical and horizontal derivative approximations
respectively –

Sobel Edge Detection: Steps

• Convolution with kernels:
– The Sobel algorithm uses two 3x3 kernels, one for

horizontal edges and one for vertical edges. Each
kernel element has a specific weight assigned to it.

– These kernels are convolved with the grayscale image,
meaning they are slid across the image, and the
weighted sum of the corresponding pixel values under
the kernel mask is calculated at each pixel location.

– The horizontal kernel emphasizes intensity changes in
the horizontal direction, while the vertical kernel
emphasizes changes in the vertical direction.

Sobel Edge Detection: Steps

• Gradient calculation:
– The convolution with each kernel results in two

gradient images, one representing the horizontal
gradient and another representing the vertical
gradient.

– Each pixel in these gradient images holds the
magnitude of the intensity change in the
corresponding direction.

Sobel Edge Detection: Steps

• Combining gradients:
– The final edge strength at each pixel is

calculated by combining the horizontal and
vertical gradients. This can be done using
different approaches:

– Magnitude: Square root of the sum of squared
horizontal and vertical gradients.

– Gradient direction: arctangent of the vertical
gradient divided by the horizontal gradient.

Sobel Edge Detection: Steps

• Thresholding:
– A threshold is applied to the combined gradient

image to classify pixels as edge pixels or non-
edge pixels.

– Pixels with gradient values exceeding the
threshold are considered edges.

– The threshold value can be chosen manually or
determined automatically using techniques like
Otsu's method.

Sobel Edge Detection: Steps

• Post-processing (optional):
– Additional steps like non-maximum suppression

can be applied to refine the detected edges by
removing single-pixel edge segments and
ensuring only the strongest edges remain.

Sobel Edge Detection:

• Practical

Scharr Edge Detection

• Scharr edge detection is an image processing
technique used to identify and highlight edges or
boundaries of objects within an image.

• It is a type of gradient-based edge detection, which
means it calculates the magnitude and direction of
the gradient at each pixel in the image.

• Edges are then identified as pixels with high
gradient magnitudes.

Scharr Edge Detection

• The Scharr operator is a 3x3 filter that is applied to
the image to calculate the gradient.

• The filter kernel for the Scharr operator in the x-
direction is:

[-3 0 3]

[-10 0 10]

[-3 0 3]

Scharr Edge Detection

• The filter kernel for the Scharr operator in the y-
direction is:

[-3 -10 -3]

[0 0 0]

[3 10 3]

Scharr Edge Detection

• The Scharr operator has several advantages over
other gradient-based edge detectors, such as the
Sobel operator.
– First, it is more rotationally symmetric, which

means that it is less sensitive to the orientation
of edges in the image.

– Second, it has a slightly higher response to
edges, which can improve the accuracy of edge
detection.

Scharr Edge Detection: Summary

• Convolution with Scharr filters:
– Applies 3x3 Scharr filters to the image to compute

gradients in two directions:
– Horizontal filter (dx = 1, dy = 0) emphasizes vertical

edges.
– Vertical filter (dx = 0, dy = 1) emphasizes horizontal

edges.

• Gradient magnitude calculation:
– Combines the horizontal and vertical gradients using

the following formula: gradient_magnitude =
sqrt(dx^2 + dy^2)

•

Scharr Edge Detection

• Practical

Canny Edge Detection

• A multi-stage edge detection algorithm developed
by John F. Canny in 1986.

• Aims to find wide range of edges while considering
factors like:
– Good detection: Finding real edges accurately.
– Localization: Placing detected edges precisely.
– Minimizing single responses: Not detecting the

same edge multiple times.
– Minimizing noise: Not detecting noise as edges.

Canny Edge Detection

Canny Edge Detection: Example

Canny Edge Detection: Example

• Image Smoothening
– In this step, we convert the image to grayscale as

edge detection does not dependent on colors.
– Then we remove the noise in the image with a

Gaussian filter as edge detection is prone to
noise.

Canny Edge Detection: Example

• Finding Intensity Gradients of the Image
– We then apply the Sobel kernel in horizontal and vertical

directions to get the first derivative in the horizontal
direction (Gx) and vertical direction (Gy) on the
smoothened image. We then calculate the edge
gradient(G) and Angle(θ) as given below,

 Edge_Gradient(G) = √(Gx2+Gy2)

 Angle(θ)=tan-1(Gy/Gx)

• We know that the gradient direction is perpendicular to the
edge. We round the angle to one of four angles
representing vertical, horizontal, and two diagonal
directions.

Canny Edge Detection: Example

Canny Edge Detection: Example

• Non-Max Suppression

– Now we remove all the unwanted pixels which may not
constitute the edge.

– For this, every pixel is checked in the direction of the
gradient if it is a local maximum in its neighbourhood.

– If it is a local maximum, it is considered for the next stage,
otherwise, it is darkened with 0. This will give a thin line in
the output image.

Canny Edge Detection: Example

• Double Threshold
– Pixels due to noise and color variation would persist in the

image. So, to remove this, we get two thresholds from the
user, lowerVal and upperVal.

– We filter out edge pixels with a weak gradient(lowerVal) value
and preserve edge pixels with a high gradient value(upperVal).

– Edges with an intensity gradient more than upperVal are sure
to edge, and those below lowerVal are sure to be non-edges,
so discarded.

– The pixels that have pixel value lesser than the upperVal and
greater than the lowerVal are considered part of the edge if it
is connected to a “sure-edge”. Otherwise, they are also
discarded.

Canny Edge Detection: Example

Canny Edge Detection: Example

• A pixel is made as a strong pixel if either of the 8
pixels around it is strong(pixel value=255) else it is
made as 0.

• That’s pretty much about Canny Edge Detection. As
you can see here, the edges are detected from an
image.

Contours

• Contours can be explained simply as a curve joining
all the continuous points (along the boundary),
having same color or intensity.

• The contours are a useful tool for shape analysis
and object detection and recognition.

Contours

Contours

• Continuous sequences of connected pixels that
share similar intensity or color values.

• Think of them as outlines or "shorelines" that
separate objects from their background.

• Often represented as a list of coordinates defining
the boundary path.

Contours

• How are they detected?
– Various algorithms exist, typically involving:
• Edge detection: Identifying pixels with

significant intensity changes, likely marking
object boundaries.
• Pixel tracing: Connecting these edge pixels

into continuous contours.
• Filtering and simplification: Removing noise

and refining the contour representation.

Contours

• Types of contours:
– Closed contours: Form a complete loop,

enclosing an object fully.
– Open contours: Start and end at image borders,

representing partial object boundaries.

Contours

• Examples of contour usage:
– Detecting fruits and vegetables in a grocery

image.
– Analyzing cell shapes in microscopy images.
– Recognizing traffic signs in road scenes.
– Tracking people in a surveillance video.

Contours Detection

• Practical

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 7.4.1.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

@mITuSkillologies @mitu_group

contact@mitu.co.in

@mitu-skillologies @MITUSkillologies

@mituskillologies@mituskillologies

mailto:tushar@tusharkute.com
https://mitu.co.in/
http://tusharkute.com/
mailto:contact@mitu.co.in
https://instagram.com/mitu_skillologies
https://fb.com/MITUSkillologies
https://twitter.com/mitu_group
https://www.linkedin.com/company/mitu-skillologies/
https://youtube.com/MITUSkillologies
https://github.com/mituskillologies/
https://www.kaggle.com/mituskillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

