
Data Analysis with Pandas

Tushar B. Kute,
http://tusharkute.com

Pandas

• Pandas is an open-source Python Library providing high-performance
data manipulation and analysis tool using its powerful data
structures. The name Pandas is derived from the word Panel Data –
an Econometrics from Multidimensional data.

• In 2008, developer Wes McKinney started developing pandas when in
need of high performance, flexible tool for analysis of data.

• Prior to Pandas, Python was majorly used for data munging and
preparation. It had very little contribution towards data analysis.
Pandas solved this problem. Using Pandas, we can accomplish five
typical steps in the processing and analysis of data, regardless of the
origin of data — load, prepare, manipulate, model, and analyze.

• Python with Pandas is used in a wide range of fields including
academic and commercial domains including finance, economics,
Statistics, analytics, etc.

Features of Pandas

• Fast and efficient DataFrame object with default and
customized indexing.

• Tools for loading data into in-memory data objects from
different file formats.

• Data alignment and integrated handling of missing data.
• Reshaping and pivoting of date sets.
• Label-based slicing, indexing and subsetting of large data sets.
• Columns from a data structure can be deleted or inserted.
• Group by data for aggregation and transformations.
• High performance merging and joining of data.
• Time Series functionality.

Installation

• Package managers of respective Linux
distributions are used to install one or more
packages in SciPy stack.

• For Ubuntu Users
– sudo apt-get install python-numpy
python-pandas python-sympy python-nose

• For Fedora Users
– sudo yum install numpyscipy python-
matplotlibipython python-pandas sympy
python-nose atlas-devel

•

Pandas data structures

• Pandas deals with the following two data
structures −
– Series
– DataFrame

• These data structures are built on top of
Numpy array, which means they are fast.

Pandas data structures

• The best way to think of these data structures is
that the higher dimensional data structure is a
container of its lower dimensional data
structure.

• For example, DataFrame is a container of Series
• Series
– 1D labeled homogeneous array, size- immutable.

• Data Frames
– General 2D labeled, size-mutable tabular structure

with potentially heterogeneously typed columns.

Series

• Series is a one-dimensional array like structure
with homogeneous data. For example, the
following series is a collection of integers 10,
23, 56, …

• Key Points
– Homogeneous data
– Size Immutable
– Values of Data Mutable

DataFrame

• DataFrame is a two-dimensional array with
heterogeneous data. For example,

• The data is represented in rows and columns. Each
column represents an attribute and each row
represents a person.

Roll Name Marks
1 Aneet 67.56
2 Asha 59.05
3 Anil 71.22

Data types of columns

• The data types of the three columns are as follows −

• Key Points

 Heterogeneous data

 Size Mutable

 Data Mutable

Column Type

Roll Integer

Name String
Marks Float

Series object

• Series is a one-dimensional labeled array capable of
holding data of any type (integer, string, float,
python objects, etc.).

• The axis labels are collectively called index.

pandas.Series
• A pandas Series can be created using the following

constructor −
pandas.Series(data, index, dtype, copy)

Creating a Series

Creating a Series

Accessing Series elements

DataFrames

• A Data frame is a two-dimensional data
structure, i.e., data is aligned in a tabular
fashion in rows and columns.

• Features of DataFrame
– Potentially columns are of different types
– Size – Mutable
– Labeled axes (rows and columns)
– Can Perform Arithmetic operations on rows and

columns

DataFrame Structure

Roll Name Marks
1 Aneet 67.56
2 Asha 59.05
3 Anil 71.22

Columns

Rows

Creating DataFrames

• A pandas DataFrame can be created using the
following constructor −

pandas.DataFrame(data, index, columns,
dtype, copy)

• A pandas DataFrame can be created using various
inputs like −
– Lists
– dict
– Series
– Numpy ndarrays
– Another DataFrame

Creating DataFrames

Creating DataFrames

Creating DataFrames

Row selection

Row deletion

Reading a csv file

• Sample: student.csv

df = read_csv (‘student.csv’)

Reading a csv file

DataFrame attributes

DataFrame functions

DataFrame: Functions

Summarizing

Indexing and slicing

• The Python and NumPy indexing operators "[]" and attribute
operator "." provide quick and easy access to Pandas data
structures across a wide range of use cases.

• However, since the type of the data to be accessed isn’t
known in advance, directly using standard operators has
some optimization limits.

• Pandas now supports three types of Multi-axes indexing; the
three types are mentioned in the following table −

.loc()

• Pandas provide various methods to have purely label
based indexing. When slicing, the start bound is also
included. Integers are valid labels, but they refer to the
label and not the position. .loc() has multiple access
methods like −
– A single scalar label
– A list of labels
– A slice object
– A Boolean array

• loc takes two single/list/range operator separated by ','.
The first one indicates the row and the second one
indicates columns.

Example:

.iloc()

• Pandas provide various methods in order
to get purely integer based indexing. Like
python and numpy, these are 0-based
indexing.

• The various access methods are as follows:
– An Integer
– A list of integers
– A range of values

Example:

Table wise function

Apply function

Renaming and reindexing

Iterating the dataframe

• The behavior of basic iteration over Pandas
objects depends on the type. When iterating over
a Series, it is regarded as array-like, and basic
iteration produces the values.

• Other data structures, like DataFrame and Panel,
follow the dict-like convention of iterating over
the keys of the objects.

• In short, basic iteration (for i in object) produces −
– Series − values
– DataFrame − column labels

Iterating through dataframes

Sorting

• There are two kinds of sorting available in
Pandas. They are −
– By label
– By Actual Value

Sorting by label

Sorting by values

Functions

• lower()
– Converts strings in the Series/Index to lower case.

• upper()
– Converts strings in the Series/Index to upper case.

• len()
– Computes String length().

• strip()
– Helps strip whitespace(including newline) from each string in the

Series/index from both the sides.

• split(' ')
– Splits each string with the given pattern.

• cat(sep=' ')
– Concatenates the series/index elements with given separator.

Functions

• get_dummies()
– Returns the DataFrame with One-Hot Encoded values.

• contains(pattern)
– Returns a Boolean value True for each element if the substring contains

in the element, else False.

• replace(a,b)
– Replaces the value a with the value b.

• repeat(value)
– Repeats each element with specified number of times.

• count(pattern)
– Returns count of appearance of pattern in each element.

• startswith(pattern)
– Returns true if the element in the Series/Index starts with the pattern.

Functions

• endswith(pattern)
– Returns true if the element in the Series/Index ends with the

pattern.

• find(pattern)
– Returns the first position of the first occurrence of the pattern.

• findall(pattern)
– Returns a list of all occurrence of the pattern.

• swapcase()
– Swaps the case lower/upper.

• islower() / isupper() / isnumeric()
– Checks whether all characters in each string in the Series/Index in

lower case / upper case / numeric or not. Returns Boolean

Functions

Functions

Options and Customization

• Pandas provide API to customize some aspects
of its behavior, display is being mostly used.

• The API is composed of five relevant functions.
They are −
– get_option()
– set_option()
– reset_option()
– describe_option()
– option_context()

Example and use

Creating DataFrames

• Statistical methods help in the
understanding and analyzing the behavior
of data.
– pct_change()
– cov()
– corr()
– rank()

Percentage change

• Series, DataFrames and Panel, all have the
function pct_change().

• This function compares every element with its
prior element and computes the change
percentage.

• By default, the pct_change() operates on
columns; if you want to apply the same row
wise, then use axis=1() argument.

Covariance

• Covariance is applied on series data. The Series
object has a method cov to compute covariance
between series objects.

• NA will be excluded automatically.
• Covariance method when applied on a

DataFrame, computes cov between all the
columns.

Correlation

• Correlation shows the linear relationship
between any two array of values (series). There
are multiple methods to compute the
correlation like pearson(default), spearman and
kendall.

• If any non-numeric column is present in the
DataFrame, it is excluded automatically.

Data Ranking

• Data Ranking produces ranking for each element in the array
of elements. In case of ties, assigns the mean rank.

• Rank optionally takes a parameter ascending which by
default is true; when false, data is reverse-ranked, with
larger values assigned a smaller rank.

• Rank supports different tie-breaking methods, specified
with the method parameter −
– average − average rank of tied group
– min − lowest rank in the group
– max − highest rank in the group
– first − ranks assigned in the order they appear in the array

Rolling

• This function can be applied on a series of data.
Specify the window=n argument and apply the
appropriate statistical function on top of it.

• Since the window size is 3, for first two elements
there are nulls and from third the value will be the
average of the n, n-1 and n-2 elements. Thus we can
also apply various functions as mentioned above.

Missing Data

• Missing data is always a problem in real life
scenarios.

• Areas like machine learning and data mining face
severe issues in the accuracy of their model
predictions because of poor quality of data caused
by missing values.

• In these areas, missing value treatment is a major
point of focus to make their models more accurate
and valid.

Example:

Multiple filtering

filter1 = (m["rating"] > 3.6) & (m["year"] > 1990)

filter1

m[filter1]

Data Ranking

• Data Ranking produces ranking for each element in the array
of elements. In case of ties, assigns the mean rank.

• Rank optionally takes a parameter ascending which by
default is true; when false, data is reverse-ranked, with
larger values assigned a smaller rank.

• Rank supports different tie-breaking methods, specified
with the method parameter −
– average − average rank of tied group
– min − lowest rank in the group
– max − highest rank in the group
– first − ranks assigned in the order they appear in the array

Rolling

• This function can be applied on a series of data.
Specify the window=n argument and apply the
appropriate statistical function on top of it.

• Since the window size is 3, for first two elements
there are nulls and from third the value will be the
average of the n, n-1 and n-2 elements. Thus we can
also apply various functions as mentioned above.

Missing Data

• Missing data is always a problem in real life
scenarios.

• Areas like machine learning and data mining face
severe issues in the accuracy of their model
predictions because of poor quality of data caused
by missing values.

• In these areas, missing value treatment is a major
point of focus to make their models more accurate
and valid.

Example:

Reading the file

Checking for missing values

• To make detecting missing values easier (and
across different array dtypes), Pandas provides
the isnull() and notnull() functions, which are
also methods on Series and DataFrame objects
−

Cleaning or filling missing data

• Pandas provides various methods for cleaning the
missing values. The fillna function can “fill in” NA
values with non-null data in a couple of ways, which
we have illustrated in the following sections.

• Replace NaN with a Scalar Value such as 0.

Missing Data

Groupby

• Any groupby operation involves one of the following
operations on the original object. They are −
– Splitting the Object
– Applying a function
– Combining the results

• In many situations, we split the data into sets and we apply
some functionality on each subset. In the apply
functionality, we can perform the following operations −
– Aggregation − computing a summary statistic
– Transformation − perform some group-specific operation
– Filtration − discarding the data with some condition

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 7.4.1.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

@mITuSkillologies @mitu_group

contact@mitu.co.in

@mitu-skillologies @MITUSkillologies

@mituskillologies@mituskillologies

mailto:tushar@tusharkute.com
https://mitu.co.in/
http://tusharkute.com/
mailto:contact@mitu.co.in
https://instagram.com/mitu_skillologies
https://fb.com/MITUSkillologies
https://twitter.com/mitu_group
https://www.linkedin.com/company/mitu-skillologies/
https://youtube.com/MITUSkillologies
https://github.com/mituskillologies/
https://www.kaggle.com/mituskillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

