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Dimensionality Reduction

• Dimensionality reduction or dimension reduction is the 
process of reducing the number of random variables 
under consideration by obtaining a set of principal 
variables. 

• It can be divided into feature selection and feature 
extraction.
– Feature selection approaches try to find a subset of the 

original variables (also called features or attributes).
– Feature projection or Feature extraction transforms the 

data in the high-dimensional space to a space of fewer 
dimensions.



Large Dimensions

• Large number of features in the dataset is one of the factors 
that affect both the training time as well as accuracy of machine 
learning models. You have different options to deal with huge 
number of features in a dataset.
– Try to train the models on original number of features, which 

take days or weeks if the number of features is too high.
– Reduce the number of variables by merging correlated 

variables.
– Extract the most important features from the dataset that 

are responsible for maximum variance in the output. 
Different statistical techniques are used for this purpose e.g. 
linear discriminant analysis, factor analysis, and principal 
component analysis.



Principal Component Analysis

• Principal component analysis, or PCA, is a statistical 
technique to convert high dimensional data to low 
dimensional data by selecting the most important features 
that capture maximum information about the dataset. 

• The features are selected on the basis of variance that they 
cause in the output. 

• The feature that causes highest variance is the first 
principal component. The feature that is responsible for 
second highest variance is considered the second principal 
component, and so on. 

• It is important to mention that principal components do 
not have any correlation with each other.



Steps in PCA

• Standardization

• Covariance Matrix Computation

• Computer Eigen vector and eigen values

• Feature vector

• Recast the Data Along the Principal 
Components Axes



Standardization 

• The aim of this step is to standardize the range of 
the continuous initial variables so that each one of 
them contributes equally to the analysis.

• More specifically, the reason why it is critical to 
perform standardization prior to PCA, is that the 
latter is quite sensitive regarding the variances of 
the initial variables. 

• That is, if there are large differences between the 
ranges of initial variables, those variables with larger 
ranges will dominate over those with small ranges 



Standardization 

• Mathematically, this can be done by subtracting 
the mean and dividing by the standard deviation 
for each value of each variable.

• Once the standardization is done, all the 
variables will be transformed to the same scale.



Covariance Matrix Computation

• The aim of this step is to understand how the 
variables of the input data set are varying from 
the mean with respect to each other, or in other 
words, to see if there is any relationship 
between them. 

• Because sometimes, variables are highly 
correlated in such a way that they contain 
redundant information. 

• So, in order to identify these correlations, we 
compute the covariance matrix.



Covariance Matrix Computation



Covariance Matrix Computation

• What do the covariances that we have as entries of the 
matrix tell us about the correlations between the 
variables?

• It’s actually the sign of the covariance that matters :

– if positive then : the two variables increase or 
decrease together (correlated)

– if negative then : One increases when the other 
decreases (Inversely correlated)

• Now, that we know that the covariance matrix is not 
more than a table that summaries the correlations 
between all the possible pairs of variables



Eigenvector and eigenvalues

• Eigenvectors and eigenvalues are the linear algebra 
concepts that we need to compute from the 
covariance matrix in order to determine the 
principal components of the data. 

• Before getting to the explanation of these 
concepts, let’s first understand what do we mean 
by principal components.



Eigenvector and eigenvalues

• Principal components are new variables that are 
constructed as linear combinations or mixtures of the 
initial variables. 

• These combinations are done in such a way that the new 
variables (i.e., principal components) are uncorrelated and 
most of the information within the initial variables is 
squeezed or compressed into the first components. 

• So, the idea is 10-dimensional data gives you 10 principal 
components, but PCA tries to put maximum possible 
information in the first component, then maximum 
remaining information in the second and so on, until 
having something like shown in the scree plot below.



Eigenvector and eigenvalues



Principal Components

• Organizing information in principal components this way, will 
allow you to reduce dimensionality without losing much 
information, and this by discarding the components with low 
information and considering the remaining components as 
your new variables.

• An important thing to realize here is that, the principal 
components are less interpretable and don’t have any real 
meaning since they are constructed as linear combinations of 
the initial variables.

• Geometrically speaking, principal components represent the 
directions of the data that explain a maximal amount of 
variance, that is to say, the lines that capture most 
information of the data.



Principal Components

• As there are as many principal components as 
there are variables in the data, principal 
components are constructed in such a manner 
that the first principal component accounts for 
the largest possible variance in the data set. 



Principal Components

• For example, let’s assume that the scatter plot of 
our data set is as shown below, can we guess the 
first principal component ? 

• Yes, it’s approximately the line that matches the 
purple marks because it goes through the origin and 
it’s the line in which the projection of the points (red 
dots) is the most spread out. 

• Or mathematically speaking, it’s the line that 
maximizes the variance (the average of the squared 
distances from the projected points (red dots) to the 
origin).



Principal Components



Example 

• Let’s suppose that our data set is 2-dimensional with 2 
variables x,y and that the eigenvectors and eigenvalues of 
the covariance matrix are as follows:

•

If we rank the eigenvalues in descending order, we get 
λ1>λ2, which means that the eigenvector that corresponds 
to the first principal component (PC1) is v1 and the one 
that corresponds to the second component (PC2) isv2.



Feature Vector

• As we saw in the previous step, computing the eigenvectors and 
ordering them by their eigenvalues in descending order, allow us 
to find the principal components in order of significance. 

• In this step, what we do is, to choose whether to keep all these 
components or discard those of lesser significance (of low 
eigenvalues), and form with the remaining ones a matrix of 
vectors that we call Feature vector.

• So, the feature vector is simply a matrix that has as columns the 
eigenvectors of the components that we decide to keep. 

• This makes it the first step towards dimensionality reduction, 
because if we choose to keep only p eigenvectors (components) 
out of n, the final data set will have only p dimensions.



Example:

• Continuing with the example from the previous step, we can 
either form a feature vector with both of the eigenvectors v1 
and v2:

• Or discard the eigenvector v2, which is the one of lesser 
significance, and form a feature vector with v1 only:

• Discarding the eigenvector v2 will reduce dimensionality by 1, 
and will consequently cause a loss of information in the final 
data set.



Last step

• The aim is to use the feature vector formed using 
the eigenvectors of the covariance matrix, to 
reorient the data from the original axes to the ones 
represented by the principal components (hence 
the name Principal Components Analysis). 

• This can be done by multiplying the transpose of 
the original data set by the transpose of the 
feature vector.



Advantages of PCA

• The training time of the algorithms reduces 
significantly with less number of features.

• It is not always possible to analyze data in high 
dimensions. For instance if there are 100 
features in a dataset. Total number of scatter 
plots required to visualize the data would be 
100(100-1)2 = 4950. Practically it is not possible 
to analyze data this way.



Normalization of features

• It is imperative to mention that a feature set must be 
normalized before applying PCA. For instance if a feature set 
has data expressed in units of Kilograms, Light years, or 
Millions, the variance scale is huge in the training set. If PCA 
is applied on such a feature set, the resultant loadings for 
features with high variance will also be large. Hence, 
principal components will be biased towards features with 
high variance, leading to false results.

• Finally, the last point to remember before we start coding is 
that PCA is a statistical technique and can only be applied to 
numeric data. Therefore, categorical features are required to 
be converted into numerical features before PCA can be 
applied.



Example:



Reading the dataset



Normalize 



Apply PCA



Calculate variance



Variance plot



Variance Ratio

• The PCA class contains 
explained_variance_ratio_ which returns the 
variance caused by each of the principal 
components.



Principal Components = 1 



Principal Components = 2



Principal Components = 3



Linear Discriminant Analysis

• Linear discriminant analysis (LDA), normal 
discriminant analysis (NDA), or discriminant 
function analysis is a generalization of Fisher's 
linear discriminant, a method used in statistics, 
pattern recognition, and machine learning to find a 
linear combination of features that characterizes or 
separates two or more classes of objects or events. 

• The resulting combination may be used as a linear 
classifier, or, more commonly, for dimensionality 
reduction before later classification. 



How LDA is performed ?

• Compute d-dimensional mean vectors for different classes 
from the dataset, where d is the dimension of feature 
space.

• Compute in-between class and with-in class scatter 
matrices.

• Compute eigen vectors and corresponding eigen values for 
the scatter matrices.

• Choose k eigen vectors corresponding to top k eigen values 
to form a transformation matrix of dimension d x k.

• Transform the d-dimensional feature space X to k-
dimensional feature space X_lda via the transformation 
matrix.



PCA vs. LDA

Reference: sebastianraschka.com



Useful resources

• https://stackabuse.com 

• http://archive.ics.uci.edu/ml/index.php 

• https://scikit-learn.org 

• https://en.wikipedia.org 

• www.towardsdatascience.com

• www.analyticsvidhya.com

• www.kaggle.com

• www.github.com 

https://stackabuse.com/
http://archive.ics.uci.edu/ml/index.php
https://scikit-learn.org/
https://en.wikipedia.org/
http://www.towardsdatascience.com/
http://www.analyticsvidhya.com/
http://www.kaggle.com/
http://www.github.com/
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