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Lets see the example...

• Suppose a job seeker was deciding between several 
offers, some closer or further from home, with various 
levels of pay and benefits. 

• He or she might create a list with the features of each 
position. Based on these features, rules can be created to 
eliminate some options. 

• For instance, "if I have a commute longer than an hour, 
then I will be unhappy", or "if I make less than $50k, I 
won't be able to support my family." 

• The difficult decision of predicting future happiness can 
be reduced to a series of small, but increasingly specific 
choices.



Lets see the example...



Decision tree

• Decision Tree is a Supervised learning technique 
that can be used for both classification and 
Regression problems, but mostly it is preferred 
for solving Classification problems. 

• It is a tree-structured classifier, where internal 
nodes represent the features of a dataset, 
branches represent the decision rules and each 
leaf node represents the outcome.



Understanding Decision tree

• In a Decision tree, there are two nodes, which 
are the Decision Node and Leaf Node. 

• Decision nodes are used to make any decision 
and have multiple branches, whereas Leaf 
nodes are the output of those decisions and do 
not contain any further branches.

• The decisions or the test are performed on the 
basis of features of the given dataset.



Decision tree 

• It is a graphical representation for getting all the 
possible solutions to a problem/decision based on given 
conditions.

• It is called a decision tree because, similar to a tree, it 
starts with the root node, which expands on further 
branches and constructs a tree-like structure.

• In order to build a tree, we use the CART algorithm, 
which stands for Classification and Regression Tree 
algorithm.

• A decision tree simply asks a question, and based on the 
answer (Yes/No), it further split the tree into subtrees. 



Decision tree 



Divide and Conquer

• Decision trees are built using a heuristic called 
recursive partitioning. 

• This approach is generally known as divide and 
conquer because it uses the feature values to split the 
data into smaller and smaller subsets of similar classes.

• Beginning at the root node, which represents the 
entire dataset, the algorithm chooses a feature that is 
the most predictive of the target class. 

• The examples are then partitioned into groups of 
distinct values of this feature; this decision forms the 
first set of tree branches.



Divide and Conquer

• To illustrate the tree building process, let's 
consider a simple example. 

• Imagine that you are working for a Hollywood 
film studio, and your desk is piled high with 
screenplays. 

• Rather than read each one cover-to-cover, you 
decide to develop a decision tree algorithm to 
predict whether a potential movie would fall 
into one of three categories: mainstream hit, 
critic's choice, or box office bust.



Continuing...

• To gather data for your model, you turn to the studio 
archives to examine the previous ten years of movie 
releases. 

• After reviewing the data for 30 different movie 
scripts, a pattern emerges. 

• There seems to be a relationship between the film's 
proposed shooting budget, the number of A-list 
celebrities lined up for starring roles, and the 
categories of success. 

• A scatter plot of this data might look something like...



The scatterplot



Scatterplot – Phase:1



Scatterplot – Phase:2



The decision tree model



The Decision tree algorithm



Example:



Example:



Terminologies Used

• Root Node: Root node is from where the decision tree starts. It 
represents the entire dataset, which further gets divided into two 
or more homogeneous sets.

• Leaf Node: Leaf nodes are the final output node, and the tree 
cannot be segregated further after getting a leaf node.

• Splitting: Splitting is the process of dividing the decision node/root 
node into sub-nodes according to the given conditions.

• Branch/Sub Tree: A tree formed by splitting the tree.

• Pruning: Pruning is the process of removing the unwanted 
branches from the tree.

• Parent/Child node: The root node of the tree is called the parent 
node, and other nodes are called the child nodes.



Search for a good tree

• How should you go about building a decision tree?

• The space of decision trees is too big for systematic 
search.

• Stop and 

– return the a value for the target feature or 

– a distribution over target feature values

• Choose a test (e.g. an input feature) to split on. 

– For each value of the test, build a subtree for those 
examples with this value for the test.



Top down induction

• A  the “best” decision attribute for next node

• Assign A as decision attribute for node

• For each value of A create new descendant 

• Sort training examples to leaf node according to the 

attribute value of the branch

• If all training examples are perfectly classified (same 

value of target attribute) stop, else iterate over new 

leaf nodes.

1. Which node to proceed with?

2. When to stop?



Choices 

• When to stop
– no more input features

– all examples are classified the same

– too few examples to make an informative split

• Which test to split on
– split gives smallest error.

– With multi-valued features

– split on all values or 

– split values into half. 



Which attribute is best ?

A1=?

True False

[21+, 5-] [8+, 30-]

[29+,35-] A2=?

True False

[18+, 33-] [11+, 2-]

[29+,35-]



Principle Criterion

• Selection of an attribute to test at each node - 
choosing the most useful attribute for classifying 
examples. 

• Information gain

– measures how well a given attribute separates the training 
examples according to their target classification

– This measure is used to select among the candidate 
attributes at each step while growing the tree

– Gain is measure of how much we can reduce 
uncertainty (Value lies between 0,1)



Entropy 

• A measure for 

– uncertainty 

– purity 

– information content

• Information theory: optimal length code assigns (- log2p) bits to 

message having probability p
• S is a sample of training examples

– p+ is the proportion of positive examples in S

– p- is the proportion of negative examples in S

• Entropy of S: average optimal number of bits to encode 
information about  certainty/uncertainty about S
Entropy(S) = p+(-log2p+) + p-(-log2p-) = -p+log2p+- p-log2p-



Entropy 

• S is a sample of training examples

• p+ is the proportion of positive examples

• p- is the proportion of negative examples

• Entropy measures the impurity of S

Entropy(S) = -p+log2p+- p-log2 p-

• The entropy is 0 if the outcome 
is ``certain”. 

• The entropy is maximum if we 
have no knowledge of the 
system (or any outcome is 
equally possible). 



Information Gain

Gain(S,A): expected reduction in entropy due to partitioning S 
on attribute A

A1=?

True False

[21+, 5-] [8+, 30-]

[29+,35-] A2=?

True False

[18+, 33-] [11+, 2-]

[29+,35-]

Gain(S,A)=Entropy(S)  vvalues(A) |Sv|/|S| Entropy(Sv)

Entropy([29+,35-]) = -29/64 log2 29/64 – 35/64 log2 35/64

                             = 0.99



Information Gain

A1=?

True False

[21+, 5-] [8+, 30-]

[29+,35-]

Entropy([21+,5-])   = 0.71
Entropy([8+,30-]) = 0.74
Gain(S,A1)=Entropy(S)
      -26/64*Entropy([21+,5-]) 

      -38/64*Entropy([8+,30-])

    =0.27

Entropy([18+,33-]) = 0.94

Entropy([8+,30-]) = 0.62

Gain(S,A2)=Entropy(S)

      -51/64*Entropy([18+,33-]) 

      -13/64*Entropy([11+,2-])

    =0.12

A2=?

True False

[18+, 33-] [11+, 2-]

[29+,35-]



Selecting next attribute

Humidity

High Normal

[3+, 4-] [6+, 1-]

S=[9+,5-]
E=0.940

Gain(S,Humidity)
=0.940-(7/14)*0.985 
  – (7/14)*0.592
=0.151

E=0.985 E=0.592

Wind

Weak Strong

[6+, 2-] [3+, 3-]

S=[9+,5-]
E=0.940

Gain(S,Wind)
=0.940-(8/14)*0.811 
  – (6/14)*1.0
=0.048

Humidity provides greater info. gain than Wind, w.r.t target classification.Humidity provides greater info. gain than Wind, w.r.t target classification.



Selecting next attribute

   Outlook

Sunny Rain

[2+, 3-] [3+, 2-]

S=[9+,5-]
E=0.940

Gain(S,Outlook)
=0.940-(5/14)*0.971 
  -(4/14)*0.0 – (5/14)*0.0971
=0.247

E=0.971 E=0.971

Overcast

[4+, 0]

E=0.0



Selecting next attribute

The information gain values for the 4 attributes are:
• Gain(S,Outlook) =0.247

• Gain(S,Humidity) =0.151

• Gain(S,Wind) =0.048

• Gain(S,Temperature) =0.029

where S denotes the collection of training examples

Note: 0Log20 =0Note: 0Log20 =0



Resources

• https://stackabuse.com/

• http://people.sc.fsu.edu

• https://www.geeksforgeeks.org

• http://scikit-learn.org/

• https://machinelearningmastery.com 

https://stackabuse.com/
http://people.sc.fsu.edu/
https://www.geeksforgeeks.org/
http://scikit-learn.org/
https://machinelearningmastery.com/


tushar@tusharkute.com

      Thank you

This presentation is created using LibreOffice Impress 5.1.6.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in 

http://tusharkute.com

/mITuSkillologies @mitu_group

contact@mitu.co.in

/company/mitu-skillologies MITUSkillologies
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