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Naive Bayes Classifier

* Naive Bayes classifiers are a collection of
classification algorithms based on Bayes’
Theorem.

* |tis not a single algorithm but a family of
algorithms where all of them share a common
principle, i.e. every pair of features being
classified is independent of each other.
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Bayes Theorem
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Defective Spanners
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Bayes Theorem

What's the probability?
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Bayes Theorem

P(B|A) * P(A)
P(B)

P(A|B) =
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Bayes Theorem

Mach1: 30 wrenches / hr -> P(Mach1)=30/50 = 0.6
Mach2: 20 wrenches / hr -> P(Mach2)=20/50 = 0.4
Out of all produced parts:

We can SEE that 1% are defective -> P(Defect) = 1%

\?v:t::: ggE that‘."-':)g:. crt:.l.ne from mach1 S IVE EEer
And 50% came from mach2 > P(Mach2 | Defect)=50%
Question:

What is the probability that a part

produced by mach2 is defective = ? -> P(Defect | Mach2)=?
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Bayes Theorem

P(Mach2 | Defect) * P(Defect)

P(Defect | Mach2) =
P(Mach2)
- *  0.01
P(Defect | Mach2) = T ooras
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That's intuitive
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Let’s look at an example:

1000 wrenches

400 came from Mach2

1% have a defect=10

of them 50% came from Mach2=5

% defective parts from Mach2 = 5/400 = 1.25%
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Exercise

Quick exercise:

P(Defect | Mach1)=?
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Example:
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P(B|A) * P(A)
P(B)

P(A|B) =

P(Walks|X) = 2
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Likelihood S
Posterior Probability H l m ; obaBiE)

P(X|\Walks) * P(Walks
P(Walks|X) = (X1 ) * P( )

P(X)
E Ma'> Likelihood
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Likelihood Prior Probabilit
Posterior Probability H l E ; robability

P(X|Drives) * P(Drives
P(Drives|X) = ol ) * P( )

P(X)
E Ma> Likelihood
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P(Walks|X) v.s. P(Drives|X)
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Naive Bayes — Step-1

#1. P(Walks)
E g v Number of Walk
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Naive Bayes — Step-2

#2. P(X)

4 o P(X) Number of Similar Observations
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Naive Bayes — Step-3

#3. P(X|Walks)

LS Number of Similar

Observations
Among those who Walk

P(X|Walks) =

Walks ¥ ,f""“:g:»,l Total number of Walkers
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Combining altogether

Likelihood : -
Posterior Probability m \ @Drobabw

*
P(Walks|X) = 10430 — 0.75

m Marginal Likelihood

d\tusharkute
— .com




Naive Bayes — Step-4

Likelihood Prior Probabilit
Posterior Probability H 1 E ; robability

P(X|Drives) x P(Drives
P(Drives|X) = L PzX) ( )

m

Marginal Likelihood
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Naive Bayes — Step-5

Likelihood : s
Posterior Probability m \ @ Probability

1 20

%
P(Drives|X) = 204 30 — 0.25

30

m Marginal Likelihood
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Types of model

P(Walks|X) v.s. P(Drives|X)

0.75v.s. 0.25
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Final Classification
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Probability Distribution
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Advantages

* When assumption of independent predictors
holds true, a Naive Bayes classifier performs
better as compared to other models.

* Naive Bayes requires a small amount of
training data to estimate the test data. So, the
training period is less.

* Naive Bayes is also easy to implement.
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Disadvantages

* Main imitation of Naive Bayes is the assumption of
independent predictors. Naive Bayes implicitly assumes
that all the attributes are mutually independent. In real life,
it is almost impossible that we get a set of predictors which
are completely independent.

* |f categorical variable has a category in test data set, which
was not observed in training data set, then model will
assign a 0 (zero) probability and will be unable to make a
prediction. This is often known as Zero Frequency. To solve
this, we can use the smoothing technique. One of the
simplest smoothing techniques is called Laplace estimation.
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Useful resources

* www.datacamp.com

* www.scikit-learn.org

* www.towardsdatascience.com
* www.medium.com

* www.analyticsvidhya.com

* www.kaggle.com

* www.stephacking.com

* www.github.com
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http://www.datacamp.com/
http://www.scikit-learn.org/
http://www.towardsdatascience.com/
http://www.medium.com/
http://www.analyticsvidhya.com/
http://www.kaggle.com/
http://www.stephacking.com/
http://www.github.com/
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