

Knowledge Representation in AI

Tushar B. Kute, http://tusharkute.com

Introduction

- Human beings are good at understanding, reasoning and interpreting knowledge.
- And using this knowledge, they are able to perform various actions in the real world. But how do machines perform the same?

- Knowledge Representation in AI describes the representation of knowledge.
- Basically, it is a study of how the beliefs, intentions, and judgments of an intelligent agent can be expressed suitably for automated reasoning.
- One of the primary purposes of Knowledge Representation includes modeling intelligent behavior for an agent.

What is Knowledge Representation?

- Knowledge Representation and Reasoning (KR, KRR) represents information from the real world for a computer to understand and then utilize this knowledge to solve complex real-life problems like communicating with human beings in natural language.
- Knowledge representation in AI is not just about storing data in a database, it allows a machine to learn from that knowledge and behave intelligently like a human being.

What is Knowledge Representation?

- The different kinds of knowledge that need to be represented in AI include:
 - Objects
 - Events
 - Performance
 - Facts
 - Meta-Knowledge
 - Knowledge-base

- Artificial Intelligent Systems usually consist of various components to display their intelligent behavior. Some of these components include:
 - Perception
 - Learning
 - Knowledge Representation & Reasoning
 - Planning
 - Execution

Knowledge Representation in AI

skillologies

- Logical representation is a language with some definite rules which deal with propositions and has no ambiguity in representation.
- It represents a conclusion based on various conditions and lays down some important communication rules.
- Also, it consists of precisely defined syntax and semantics which supports the sound inference.
- Each sentence can be translated into logics using syntax and semantics.

- Uses formal logic to represent knowledge.
 - Propositional Logic: Involves using statements that can be either true or false.
 - First-Order Logic (Predicate Logic): Extends propositional logic by incorporating objects, properties, and relations.
 - Example:
 - All humans are mortal.
 - Socrates is a human.
 - Therefore, Socrates is mortal.

Syntax	Semantics
 It decides how we can construct legal sentences in logic. It determines which symbol we can use in knowledge representation. Also, how to write those symbols. 	 Semantics are the rules by which we can interpret the sentence in the logic. It assigns a meaning to each sentence.

• Advantages:

- Logical representation helps to perform logical reasoning.
- This representation is the basis for the programming languages.
- Disadvantages:
 - Logical representations have some restrictions and are challenging to work with.
 - This technique may not be very natural, and inference may not be very efficient.

- Semantic networks work as an alternative of predicate logic for knowledge representation. In Semantic networks, you can represent your knowledge in the form of graphical networks.
- This network consists of nodes representing objects and arcs which describe the relationship between those objects. Also, it categorizes the object in different forms and links those objects.
- This representation consist of two types of relations:
 - IS-A relation (Inheritance)
 - Kind-of-relation

Semantic Network Representation

- Uses a graph of nodes and edges to represent concepts and their relationships.
 - Nodes: Represent objects or concepts.
 - Edges: Represent relationships between nodes.
 - Example:
 - (Human) --is a--> (Mammal)
 - (Mammal) --has a--> (Heart)
 - (Human) --has a--> (Heart)

Semantic Network Representation

Semantic Network Representation

- Advantages:
 - Semantic networks are a natural representation of knowledge.
 - Also, it conveys meaning in a transparent manner.
 - These networks are simple and easy to understand.
- Disadvantages:
 - Semantic networks take more computational time at runtime.
 - Also, these are inadequate as they do not have any equivalent quantifiers.
 - These networks are not intelligent and depend on the creator of the system.

- A frame is a record like structure that consists of a collection of attributes and values to describe an entity in the world.
- These are the AI data structure that divides knowledge into substructures by representing stereotypes situations.
- Basically, it consists of a collection of slots and slot values of any type and size.
- Slots have names and values which are called facets.

Frame Representation

- Structures for representing stereotyped situations.
- Consist of slots (attributes) and fillers (values).
- Allow for the organization of knowledge into hierarchies.
- Example:
 - Frame: Human
 - Slots:
 - Name: (Type: String)
 - Age: (Type: Integer)
 - Occupation: (Type: String)

Frame Representation

- Advantages:
 - It makes the programming easier by grouping the related data.
 - Frame representation is easy to understand and visualize.
 - It is very easy to add slots for new attributes and relations.
 - Also, it is easy to include default data and search for missing values.
- Disadvantages:
 - In frame system inference, the mechanism cannot be easily processed.
 - The inference mechanism cannot be smoothly proceeded by frame representation.
 - It has a very generalized approach.

Production Rules

- In production rules, agent checks for the condition and if the condition exists then production rule fires and corresponding action is carried out.
- The condition part of the rule determines which rule may be applied to a problem. Whereas, the action part carries out the associated problem-solving steps. This complete process is called a recognize-act cycle.
- The production rules system consists of three main parts:
 - The set of production rules
 - Working Memory
 - The recognize-act-cycle

Production Rules

- Uses condition-action pairs for knowledge representation.
- Often used in expert systems.
- Example:
 - IF it is raining THEN take an umbrella.
 - IF the light is red THEN stop.

Production Rules

- Advantages:
 - The production rules are expressed in natural language.
 - The production rules are highly modular and can be easily removed or modified.
- Disadvantages:
 - It does not exhibit any learning capabilities and does not store the result of the problem for future uses.
 - During the execution of the program, many rules may be active. Thus, rule-based production systems are inefficient.

Ontology

- A formal representation of knowledge as a set of concepts within a domain and the relationships between those concepts.
- Used to model complex systems and their interrelationships.
 - Example:
 - Ontology: Medical
 - Concepts:
 - - Disease
 - Symptom
 - - Treatment
 - Relationships:
 - Disease hasSymptom Symptom
 - Disease treatedBy Treatment

Bayesian Networks

- A probabilistic graphical model representing a set of variables and their conditional dependencies using a directed acyclic graph (DAG).
- Useful for reasoning under uncertainty.
- Example:
 - Node: Rain
 - Node: Sprinkler
 - Node: WetGrass
 - Arrows:

Rain -> WetGrass Sprinkler -> WetGrass

Thank you

This presentation is created using LibreOffice Impress 7.4.1.2, can be used freely as per GNU General Public License

kaggle @mituskillologies Web Resources https://mitu.co.in http://tusharkute.com @mituskillologies

contact@mitu.co.in
tushar@tusharkute.com