
Logic

Tushar B. Kute,
http://tusharkute.com

Propositional Logic

• Propositional logic, also known as propositional
calculus or boolean logic, is a branch of logic that
deals with propositions and their relationships
through logical connectives.

• It forms the foundation of classical logic and is
essential in fields like mathematics, computer
science, and artificial intelligence.

Propositional Logic

• Propositions:
– A proposition is a declarative sentence that is

either true or false, but not both.
– Examples:

• "The sky is blue."
• "2 + 2 = 4."
• "It is raining."

Propositional Logic

• Logical Connectives:
– Connectives are used to combine propositions to form

more complex logical statements. The primary connectives
are:
• AND (): Conjunction; true if both propositions are true.∧
• OR (): Disjunction; true if at least one of the ∨

propositions is true.
• NOT (¬): Negation; true if the proposition is false.
• IMPLIES (): Implication; true if the first proposition →

implies the second.
• IF AND ONLY IF (): Biconditional; true if both ↔

propositions are either true or false.

Propositional Logic

• Truth Tables:
– A truth table shows the truth value of a

proposition for every possible combination of
truth values of its components.

• Example: Truth table for A BA B∧ ∧

Propositional Logic

• Tautologies, Contradictions, and Contingencies:
– Tautology: A proposition that is always true,

regardless of the truth values of its components.
Example: A ¬AA ¬A∨ ∨

– Contradiction: A proposition that is always false.
Example: A ¬AA ¬A∧ ∧

– Contingency: A proposition that is neither always
true nor always false.

Propositional Logic

• Logical Equivalence:
– Two propositions are logically equivalent if they

have the same truth value in every possible
situation.

– Example: A BA B is equivalent to B AB A ∨ ∨ ∨ ∨
(commutative property).

Propositional Logic

• Example of Propositional Logic

• Let's consider a practical example: determining the
truth value of a complex proposition.
– Propositions:

 P: "It is raining."

 Q: "I have an umbrella."

 R: "I will not get wet."
– Logical Statement:

• (P Q) (Q R)(P Q) (Q R)→ ∧ → → ∧ →

Propositional Logic

• Step-by-Step Analysis:
– Identify the Components:

 P: "It is raining."

 Q: "I have an umbrella."

 R: "I will not get wet."

Propositional Logic

Propositional Logic

• Analyze the Results:
– The proposition (P Q) (Q R)(P Q) (Q R) is → ∧ → → ∧ →

true in the following cases:
– When PP is false and QQ is true, regardless of

RR's value.
– When PP and QQ are both true, and RR is true.

Predicate Logic

• Predicate logic, also known as first-order logic
(FOL), extends propositional logic by dealing with
predicates, which express properties of objects or
relationships between objects.

• Predicate logic is more expressive than
propositional logic, allowing for the representation
of more complex statements and reasoning.

First Order Logic

• Consider the following sentence, which we cannot
represent using PL logic.
– "Some humans are intelligent", or
– "Sachin likes cricket."

• To represent the above statements, PL logic is not
sufficient, so we required some more powerful
logic, such as first-order logic.

First Order Logic

• First-order logic is another way of knowledge
representation in artificial intelligence. It is an
extension to propositional logic.

• FOL is sufficiently expressive to represent the natural
language statements in a concise way.

• First-order logic is also known as Predicate logic or
First-order predicate logic.

• First-order logic is a powerful language that develops
information about the objects in a more easy way and
can also express the relationship between those
objects.

First Order Logic

• First-order logic (like natural language) does not only assume
that the world contains facts like propositional logic but also
assumes the following things in the world:
– Objects: A, B, people, numbers, colors, wars, theories,

squares, pits, wumpus,
– Relations: It can be unary relation such as: red, round, is

adjacent, or n-any relation such as: the sister of, brother of,
has color, comes between

– Function: Father of, best friend, third inning of, end of,
• As a natural language, first-order logic also has two main parts:

– Syntax
– Semantics

First Order Logic

• Following are the basic elements of FOL syntax:
– Constant 1, 2, A, John, Mumbai, cat,....
– Variables x, y, z, a, b,....
– Predicates Brother, Father, >,....
– Function sqrt, LeftLegOf,
– Connectives , , ¬, , ∧ ∨ ⇒ ⇔
– Equality ==
– Quantifier , ∀ ∃

First Order Logic

• Atomic sentences:
– Atomic sentences are the most basic sentences

of first-order logic. These sentences are formed
from a predicate symbol followed by a
parenthesis with a sequence of terms.

– We can represent atomic sentences as
Predicate (term1, term2,, term n).

– Example: Ravi and Ajay are brothers: =>
Brothers(Ravi, Ajay).

 Chinky is a cat: => cat (Chinky).

First Order Logic

• Complex Sentences:
– Complex sentences are made by combining atomic

sentences using connectives.

• First-order logic statements can be divided into two
parts:
– Subject: Subject is the main part of the statement.
– Predicate: A predicate can be defined as a relation,

which binds two atoms together in a statement.

First Order Logic

• Consider the statement: "x is an integer.", it
consists of two parts, the first part x is the
subject of the statement and second part "is an
integer," is known as a predicate.

Quantifiers in First Order Logic

• A quantifier is a language element which generates
quantification, and quantification specifies the quantity
of specimen in the universe of discourse.

• These are the symbols that permit to determine or
identify the range and scope of the variable in the
logical expression. There are two types of quantifier:
– Universal Quantifier, (for all, everyone, everything)
– Existential quantifier, (for some, at least one).

Universal Quantifier

• Universal quantifier is a symbol of logical representation,
which specifies that the statement within its range is
true for everything or every instance of a particular
thing.

• The Universal quantifier is represented by a symbol , ∀
which resembles an inverted A.

• Note: In universal quantifier we use implication " ".→
• If x is a variable, then x is read as:∀

 For all x

 For each x

 For every x.

Universal Quantifier

• Example: All man drink coffee.

• Let a variable x which refers to a cat so all x can be
represented in UOD as below:

∀x man(x) → drink (x, coffee).

It will be read as: There are all x where x is a man
who drink coffee.

Existential Quantifier

• Existential quantifiers are the type of quantifiers, which express
that the statement within its scope is true for at least one instance
of something.

• It is denoted by the logical operator , which resembles as inverted ∃
E. When it is used with a predicate variable then it is called as an
existential quantifier.

• Note: In Existential quantifier we always use AND or Conjunction
symbol ().∧

• If x is a variable, then existential quantifier will be x or (x). And it ∃ ∃
will be read as:

 There exists a 'x.'

 For some 'x.'

 For at least one 'x.'

Existential Quantifier

• Example:

Some boys are intelligent.

∃x: boys(x) intelligent(x)∧
• It will be read as: There are some x where x is a boy who is intelligent.

Points

• Points to remember:
– The main connective for universal quantifier ∀

is implication .→
– The main connective for existential quantifier

 is and .∃ ∧
• Properties of Quantifiers:

– In universal quantifier, x y is similar to y x.∀ ∀ ∀ ∀
– In Existential quantifier, x y is similar to y x.∃ ∃ ∃ ∃
– ∃x y is not similar to y x.∀ ∀ ∃

Examples

• 1. All birds fly.

In this question the predicate is "fly(bird)."

And since there are all birds who fly so it will be represented as
follows.

 ∀x bird(x) fly(x).→

• 2. Every man respects his parent.

In this question, the predicate is "respect(x, y)," where x=man,
and y= parent.

Since there is every man so will use , and it will be represented ∀
as follows:

 ∀x man(x) respects (x, parent).→

Examples

• 3. Some boys play cricket.

In this question, the predicate is "play(x, y)," where x= boys, and y=
game. Since there are some boys so we will use , and it will be ∃
represented as:

 ∃x boys(x) play(x, cricket).→

• 4. Not all students like both Mathematics and Science.

In this question, the predicate is "like(x, y)," where x= student, and
y= subject.

Since there are not all students, so we will use with negation, so ∀
following representation for this:

 ¬ (x) [student(x) like(x, Mathematics) like(x, Science)].∀ → ∧

Examples

• 5. Only one student failed in Mathematics.

In this question, the predicate is "failed(x, y)," where x=
student, and y= subject.

Since there is only one student who failed in
Mathematics, so we will use following representation
for this:

 ∃(x) [student(x) failed (x, Mathematics) (y) → ∧∀
[¬(x==y) student(y) ¬failed (x, Mathematics)].∧ →

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 7.4.1.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

@mITuSkillologies @mitu_group

contact@mitu.co.in

@mitu-skillologies @MITUSkillologies

@mituskillologies@mituskillologies

mailto:tushar@tusharkute.com
https://mitu.co.in/
http://tusharkute.com/
mailto:contact@mitu.co.in
https://instagram.com/mitu_skillologies
https://fb.com/MITUSkillologies
https://twitter.com/mitu_group
https://www.linkedin.com/company/mitu-skillologies/
https://youtube.com/MITUSkillologies
https://github.com/mituskillologies/
https://www.kaggle.com/mituskillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

