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Propositional Logic

• Propositional logic, also known as propositional 
calculus or boolean logic, is a branch of logic that 
deals with propositions and their relationships 
through logical connectives. 

• It forms the foundation of classical logic and is 
essential in fields like mathematics, computer 
science, and artificial intelligence.



Propositional Logic

• Propositions:
– A proposition is a declarative sentence that is 

either true or false, but not both.
– Examples:

• "The sky is blue."
• "2 + 2 = 4."
• "It is raining."



Propositional Logic

• Logical Connectives:
– Connectives are used to combine propositions to form 

more complex logical statements. The primary connectives 
are:
• AND ( ): Conjunction; true if both propositions are true.∧
• OR ( ): Disjunction; true if at least one of the ∨

propositions is true.
• NOT (¬): Negation; true if the proposition is false.
• IMPLIES ( ): Implication; true if the first proposition →

implies the second.
• IF AND ONLY IF ( ): Biconditional; true if both ↔

propositions are either true or false.



Propositional Logic

• Truth Tables:
– A truth table shows the truth value of a 

proposition for every possible combination of 
truth values of its components.

• Example: Truth table for A BA B∧ ∧



Propositional Logic

• Tautologies, Contradictions, and Contingencies:
– Tautology: A proposition that is always true, 

regardless of the truth values of its components.
Example: A ¬AA ¬A∨ ∨

– Contradiction: A proposition that is always false.
Example: A ¬AA ¬A∧ ∧

– Contingency: A proposition that is neither always 
true nor always false.



Propositional Logic

• Logical Equivalence:
– Two propositions are logically equivalent if they 

have the same truth value in every possible 
situation.

– Example: A BA B is equivalent to B AB A ∨ ∨ ∨ ∨
(commutative property).



Propositional Logic

• Example of Propositional Logic

• Let's consider a practical example: determining the 
truth value of a complex proposition.
– Propositions:

        P: "It is raining."

        Q: "I have an umbrella."

        R: "I will not get wet."
– Logical Statement:

• (P Q) (Q R)(P Q) (Q R)→ ∧ → → ∧ →



Propositional Logic

• Step-by-Step Analysis:
– Identify the Components:

        P: "It is raining."

        Q: "I have an umbrella."

        R: "I will not get wet."



Propositional Logic



Propositional Logic

• Analyze the Results:
– The proposition (P Q) (Q R)(P Q) (Q R) is → ∧ → → ∧ →

true in the following cases:
– When PP is false and QQ is true, regardless of 

RR's value.
– When PP and QQ are both true, and RR is true.



Predicate Logic

• Predicate logic, also known as first-order logic 
(FOL), extends propositional logic by dealing with 
predicates, which express properties of objects or 
relationships between objects. 

• Predicate logic is more expressive than 
propositional logic, allowing for the representation 
of more complex statements and reasoning.



First Order Logic

• Consider the following sentence, which we cannot 
represent using PL logic.
– "Some humans are intelligent", or
– "Sachin likes cricket."

• To represent the above statements, PL logic is not 
sufficient, so we required some more powerful 
logic, such as first-order logic. 



First Order Logic

• First-order logic is another way of knowledge 
representation in artificial intelligence. It is an 
extension to propositional logic.

• FOL is sufficiently expressive to represent the natural 
language statements in a concise way.

• First-order logic is also known as Predicate logic or 
First-order predicate logic. 

• First-order logic is a powerful language that develops 
information about the objects in a more easy way and 
can also express the relationship between those 
objects.



First Order Logic

• First-order logic (like natural language) does not only assume 
that the world contains facts like propositional logic but also 
assumes the following things in the world:
– Objects: A, B, people, numbers, colors, wars, theories, 

squares, pits, wumpus, ......
– Relations: It can be unary relation such as: red, round, is 

adjacent, or n-any relation such as: the sister of, brother of, 
has color, comes between

– Function: Father of, best friend, third inning of, end of, ......
• As a natural language, first-order logic also has two main parts:

– Syntax
– Semantics



First Order Logic

• Following are the basic elements of FOL syntax:
– Constant 1, 2, A, John, Mumbai, cat,....
– Variables x, y, z, a, b,....
– Predicates Brother, Father, >,....
– Function sqrt, LeftLegOf, ....
– Connectives , , ¬, , ∧ ∨ ⇒ ⇔
– Equality ==
– Quantifier , ∀ ∃



First Order Logic

• Atomic sentences:
– Atomic sentences are the most basic sentences 

of first-order logic. These sentences are formed 
from a predicate symbol followed by a 
parenthesis with a sequence of terms.

– We can represent atomic sentences as 
Predicate (term1, term2, ......, term n).

– Example: Ravi and Ajay are brothers: => 
Brothers(Ravi, Ajay).

           Chinky is a cat: => cat (Chinky).



First Order Logic

• Complex Sentences:
– Complex sentences are made by combining atomic 

sentences using connectives.

• First-order logic statements can be divided into two 
parts:
– Subject: Subject is the main part of the statement.
– Predicate: A predicate can be defined as a relation, 

which binds two atoms together in a statement.



First Order Logic

• Consider the statement: "x is an integer.", it 
consists of two parts, the first part x is the 
subject of the statement and second part "is an 
integer," is known as a predicate. 



Quantifiers in First Order Logic

• A quantifier is a language element which generates 
quantification, and quantification specifies the quantity 
of specimen in the universe of discourse.

• These are the symbols that permit to determine or 
identify the range and scope of the variable in the 
logical expression. There are two types of quantifier:
– Universal Quantifier, (for all, everyone, everything)
– Existential quantifier, (for some, at least one).



Universal Quantifier

• Universal quantifier is a symbol of logical representation, 
which specifies that the statement within its range is 
true for everything or every instance of a particular 
thing.

• The Universal quantifier is represented by a symbol , ∀
which resembles an inverted A.

• Note: In universal quantifier we use implication " ".→
• If x is a variable, then x is read as:∀

    For all x

    For each x

    For every x.



Universal Quantifier

• Example: All man drink coffee.

• Let a variable x which refers to a cat so all x can be 
represented in UOD as below: 

∀x man(x) → drink (x, coffee). 

It will be read as: There are all x where x is a man 
who drink coffee.



Existential Quantifier

• Existential quantifiers are the type of quantifiers, which express 
that the statement within its scope is true for at least one instance 
of something.

• It is denoted by the logical operator , which resembles as inverted ∃
E. When it is used with a predicate variable then it is called as an 
existential quantifier.

• Note: In Existential quantifier we always use AND or Conjunction 
symbol ( ).∧

• If x is a variable, then existential quantifier will be x or (x). And it ∃ ∃
will be read as:

    There exists a 'x.'

    For some 'x.'

    For at least one 'x.'



Existential Quantifier

• Example:

Some boys are intelligent.

∃x: boys(x)  intelligent(x)∧
• It will be read as: There are some x where x is a boy who is intelligent. 



Points

• Points to remember:
– The main connective for universal quantifier  ∀

is implication .→
– The main connective for existential quantifier 

 is and .∃ ∧
• Properties of Quantifiers:

– In universal quantifier, x y is similar to y x.∀ ∀ ∀ ∀
– In Existential quantifier, x y is similar to y x.∃ ∃ ∃ ∃
– ∃x y is not similar to y x.∀ ∀ ∃



Examples 

• 1. All birds fly.

In this question the predicate is "fly(bird)."

And since there are all birds who fly so it will be represented as 
follows.

              ∀x bird(x) fly(x).→

• 2. Every man respects his parent.

In this question, the predicate is "respect(x, y)," where x=man, 
and y= parent.

Since there is every man so will use , and it will be represented ∀
as follows:

              ∀x man(x)  respects (x, parent).→



Examples 

• 3. Some boys play cricket.

In this question, the predicate is "play(x, y)," where x= boys, and y= 
game. Since there are some boys so we will use , and it will be ∃
represented as:

              ∃x boys(x)  play(x, cricket).→

• 4. Not all students like both Mathematics and Science.

In this question, the predicate is "like(x, y)," where x= student, and 
y= subject.

Since there are not all students, so we will use  with negation, so ∀
following representation for this:

              ¬  (x) [ student(x)  like(x, Mathematics)  like(x, Science)].∀ → ∧



Examples 

• 5. Only one student failed in Mathematics.

In this question, the predicate is "failed(x, y)," where x= 
student, and y= subject.

Since there is only one student who failed in 
Mathematics, so we will use following representation 
for this:

              ∃(x) [ student(x)  failed (x, Mathematics)  (y) → ∧∀
[¬(x==y)  student(y)  ¬failed (x, Mathematics)].∧ →
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