
Numerical Python

Tushar B. Kute,
http://tusharkute.com

What is numpy?

• NumPy is a Python package. It stands for 'Numerical
Python'. It is a library consisting of multidimensional
array objects and a collection of routines for
processing of array.

• Numeric, the ancestor of NumPy, was developed by
Jim Hugunin.

• Another package Numarray was also developed,
having some additional functionalities.

• In 2005, Travis Oliphant created NumPy package by
incorporating the features of Numarray into Numeric
package.

Operations using numpy

• Using NumPy, a developer can perform
the following operations −
– Mathematical and logical operations on

arrays.
– Fourier transforms and routines for shape

manipulation.
– Operations related to linear algebra. NumPy

has in-built functions for linear algebra and
random number generation.

Replacement to MatLab

• NumPy is often used along with packages like SciPy
(Scientific Python) and Matplotlib (plotting library).

• This combination is widely used as a replacement
for MatLab, a popular platform for technical
computing.

• However, Python alternative to MatLab is now
seen as a more modern and complete
programming language.

• It is open source, which is an added advantage of
NumPy.

Installing numpy

• Standard Python distribution doesn't come bundled
with NumPy module. A lightweight alternative is to
install NumPy using popular Python package installer,
pip.

sudo pip3 install numpy
sudo apt install python3-numpy

• The best way to enable NumPy is to use an installable
binary package specific to your operating system.
– These binaries contain full SciPy stack (inclusive of NumPy,

SciPy, matplotlib, IPython, SymPy and nose packages along
with core Python).

Ndarray object

• The most important object defined in NumPy is
an N-dimensional array type called ndarray. It
describes the collection of items of the same
type.

• Items in the collection can be accessed using a
zero-based index.

• Every item in an ndarray takes the same size of
block in the memory.

• Each element in ndarray is an object of data-
type object (called dtype).

Ndarray object

• Any item extracted from ndarray object (by slicing) is
represented by a Python object of one of array scalar
types.

• The following diagram shows a relationship between
ndarray, data type object (dtype) and array scalar type −

Ndarray object

• An instance of ndarray class can be constructed by
different array creation routines described later in
the tutorial.

• The basic ndarray is created using an array function
in NumPy as follows −

numpy.array
• It creates an ndarray from any object exposing array

interface, or from any method that returns an array.
numpy.array(object, dtype = None, copy =
True, order = None, subok = False, ndmin = 0)

Ndarray object parameters

• object
– Any object exposing the array interface method returns an array, or any

(nested) sequence.

• dtype
– Desired data type of array, optional

• copy
– Optional. By default (true), the object is copied

• order
– C (row major) or F (column major) or A (any) (default)

• subok
– By default, returned array forced to be a base class array. If true, sub-classes

passed through

• ndmin
– Specifies minimum dimensions of resultant array

Creating ndarray

import numpy as np
a = np.array([1,2,3])
print (a)
more than one dimensions
import numpy as np
a = np.array([[1, 2], [3, 4]])
print (a)
minimum dimensions
import numpy as np
a = np.array([1, 2, 3,4,5], ndmin = 2)
print (a)

dtype parameter
import numpy as np
a = np.array([1, 2, 3], dtype = complex)
print (a)

Creating ndarray

Data types

• bool_
– Boolean (True or False) stored as a byte

• int_
– Default integer type (same as C long; normally either int64 or int32)

• intc
– Identical to C int (normally int32 or int64)

• intp
– Integer used for indexing (same as C ssize_t; normally either int32 or

int64)

• int8
– Byte (-128 to 127)

• int16
– Integer (-32768 to 32767)

Data types

• int32
– Integer (-2147483648 to 2147483647)

• int64
– Integer (-9223372036854775808 to 9223372036854775807)

• uint8
– Unsigned integer (0 to 255)

• uint16
– Unsigned integer (0 to 65535)

• uint32
– Unsigned integer (0 to 4294967295)

• uint64
– Unsigned integer (0 to 18446744073709551615)

Data types

• float_
– Shorthand for float64

• float16
– Half precision float: sign bit, 5 bits exponent, 10 bits mantissa

• float32
– Single precision float: sign bit, 8 bits exponent, 23 bits mantissa

• float64
– Double precision float: sign bit, 11 bits exponent, 52 bits mantissa

• complex_
– Shorthand for complex128

• complex64
– Complex number, represented by two 32-bit floats (real and imaginary components)

• complex128
– Complex number, represented by two 64-bit floats (real and imaginary components)

Data type objects: dtype

• A data type object describes interpretation of
fixed block of memory corresponding to an
array, depending on the following aspects −
– Type of data (integer, float or Python object)
– Size of data
– Byte order (little-endian or big-endian)
– In case of structured type, the names of fields,

data type of each field and part of the memory
block taken by each field.

– If data type is a subarray, its shape and data type

Data type objects: dtype

• The byte order is decided by prefixing '<' or '>' to data type.
'<' means that encoding is little-endian (least significant is
stored in smallest address). '>' means that encoding is big-
endian (most significant byte is stored in smallest address).

• A dtype object is constructed using the following syntax −

numpy.dtype(object, align, copy)
• The parameters are −
– Object − To be converted to data type object
– Align − If true, adds padding to the field to make it similar to C-

struct
– Copy − Makes a new copy of dtype object. If false, the result is

reference to builtin data type object

Data types: example

using array-scalar type
import numpy as np
dt = np.dtype(np.int32)
print (dt)

#int8, int16, int32, int64 can be replaced by
equivalent string 'i1', 'i2','i4', etc.
dt = np.dtype('i4')
print (dt)

using endian notation
dt = np.dtype('>i4')
print (dt)

Data types: example

first create structured data type
import numpy as np
dt = np.dtype([('age',np.int8)])
print (dt)

now apply it to ndarray object
dt = np.dtype([('age',np.int8)])
a = np.array([(10,),(20,),(30,)], dtype = dt)
print (dt)

file name can be used to access content of age column
dt = np.dtype([('age',np.int8)])
a = np.array([(10,),(20,),(30,)], dtype = dt)
print (a['age'])

Data types: example

import numpy as np
student = np.dtype([('name','S20'), ('age',
'i1'), ('marks', 'f4')])
print (student)

import numpy as np
student = np.dtype([('name','S20'),
('age','i1'), ('marks', 'f4')])
a = np.array([('abc', 21, 50),('xyz', 18,
75)], dtype = student)
print (a)

Unique character codes

• 'b' − boolean
• 'i' − (signed) integer
• 'u' − unsigned integer
• 'f' − floating-point
• 'c' − complex-floating point
• 'm' − timedelta
• 'M' − datetime
• 'O' − (Python) objects
• 'S', 'a' − (byte-)string
• 'U' − Unicode
• 'V' − raw data (void)

ndarray.shape

import numpy as np
a = np.array([[1,2,3],[4,5,6]])
print (a.shape)

this resizes the ndarray
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
a.shape = (3,2)
print (a)

import numpy as np
a = np.array([[1,2,3],[4,5,6]])
b = a.reshape(3,2)
print (b)

ndarray.ndim

an array of evenly spaced numbers
import numpy as np
a = np.arange(24)
print (a)

this is one dimensional array
import numpy as np
a = np.arange(24)
print(a.ndim)

now reshape it
b = a.reshape(2,4,3)
print (b)
b is having three dimensions

ndarray.itemsize

dtype of array is int8 (1 byte)
import numpy as np
x = np.array([1,2,3,4,5], dtype = np.int8)
print (x.itemsize)

dtype of array is now float32 (4 bytes)
import numpy as np
x = np.array([1,2,3,4,5], dtype = np.float32)
print (x.itemsize)

Array creation routines

• A new ndarray object can be constructed by any of the
following array creation routines or using a low-level ndarray
constructor.

• numpy.empty
– It creates an uninitialized array of specified shape and dtype. It

uses the following constructor −

numpy.empty(shape, dtype = float, order = 'C')
– The constructor takes the following parameters.
• Shape

– Shape of an empty array in int or tuple of int

• Dtype
– Desired output data type. Optional

• Order
– 'C' for C-style row-major array, 'F' for FORTRAN style column-major array

Example:

• The following code shows an example of
an empty array.

import numpy as np
x = np.empty([3,2], dtype = int)
print (x)

Numpy zeros

array of five zeros. Default dtype is float
import numpy as np
x = np.zeros(5)
print (x)

x = np.zeros((5,), dtype = np.int)
print (x)

custom type
import numpy as np
x = np.zeros((2,2), dtype = [('x', 'i4'), ('y', 'i4')])
print (x)

Numpy ones

array of five ones. Default dtype is float
import numpy as np
x = np.ones(5)
print (x)

import numpy as np
x = np.ones([2,2], dtype = int)
print (x)

Creating array from existing data

• numpy.asarray
– This function is similar to numpy.array except for the fact that it

has fewer parameters. This routine is useful for converting
Python sequence into ndarray.

numpy.asarray(a, dtype = None, order = None)
The constructor takes the following parameters.
– Input data in any form such as list, list of tuples, tuples, tuple of

tuples or tuple of lists
– dtype
• By default, the data type of input data is applied to the resultant ndarray

– order
• C (row major) or F (column major). C is default

Examples:

convert list to ndarray
x = [1,2,3]
a = np.asarray(x)
print (a)

dtype is set
x = [1,2,3]
a = np.asarray(x, dtype = float)
print (a)

ndarray from tuple
x = (1,2,3)
a = np.asarray(x)
print (a)

ndarray from list of tuples
x = [(1,2,3),(4,5)]
a = np.asarray(x)
print (a)

From buffer

• This function interprets a buffer as one-dimensional array.
Any object that exposes the buffer interface is used as
parameter to return an ndarray.

numpy.frombuffer(buffer, dtype = float, count
= -1, offset = 0)
– buffer

• Any object that exposes buffer interface

– dtype
• Data type of returned ndarray. Defaults to float

– count
• The number of items to read, default -1 means all data

– offset
• The starting position to read from. Default is 0

Example:

import numpy as np
s = 'Hello World'
a = np.frombuffer(s, dtype = 'S1')
print (a)

From iter

• This function builds an ndarray object from any iterable
object. A new one-dimensional array is returned by this
function.

numpy.fromiter(iterable, dtype, count = -1)
– iterable
• Any iterable object

– dtype
• Data type of resultant array

– count
• The number of items to be read from iterator.

Default is -1 which means all data to be read

Example:

create list object using range function
import numpy as np
list = range(5)
print (list)
obtain iterator object from list
import numpy as np
list = range(5)
it = iter(list)

use iterator to create ndarray
x = np.fromiter(it, dtype = float)
print (x)

Array from numerical ranges

• numpy.arange

This function returns an ndarray object containing evenly spaced
values within a given range. The format of the function is as follows

numpy.arange(start, stop, step, dtype)
– start
• The start of an interval. If omitted, defaults to 0

– stop
• The end of an interval (not including this number)

– step
• Spacing between values, default is 1

– dtype
• Data type of resulting ndarray. If not given, data type of input is

used

Example:

import numpy as np
x = np.arange(5)
print (x)

dtype set
x = np.arange(5, dtype = float)
print (x)

start and stop parameters set
import numpy as np
x = np.arange(10,20,2)
print (x)

linspace

numpy.linspace

• This function is similar to arange() function. In this function, instead of step
size, the number of evenly spaced values between the interval is specified. The
usage of this function is as follows −

numpy.linspace(start, stop, num, endpoint, retstep, dtype)
– Start: The starting value of the sequence
– Stop: The end value of the sequence, included in the sequence if endpoint

set to true
– Num: The number of evenly spaced samples to be generated. Default is 50
– Endpoint: True by default, hence the stop value is included in the sequence.

If false, it is not included
– Retstep: If true, returns samples and step between the consecutive

numbers
– Dtype: Data type of output ndarray

Example:

import numpy as np
x = np.linspace(10,20,5)
print (x)

endpoint set to false
x = np.linspace(10,20, 5, endpoint = False)
print (x)

find retstep value
x = np.linspace(1,2,5, retstep = True)
print (x)
retstep here is 0.25

Indexing and slicing

• Contents of ndarray object can be accessed and
modified by indexing or slicing, just like Python's
in-built container objects.

• Basic slicing is an extension of Python's basic
concept of slicing to n dimensions.

• A Python slice object is constructed by giving
start, stop, and step parameters to the built-in
slice function.

• This slice object is passed to the array to extract
a part of array.

Example:

import numpy as np
a = np.arange(10)
s = slice(2,7,2)
print (a[s])

a = np.arange(10)
b = a[2:7:2]
print (b)

a = np.arange(10)
b = a[5]
print (b)

Example:

slice items starting from index
import numpy as np
a = np.arange(10)
print (a[2:])

slice items between indexes
a = np.arange(10)
print (a[2:5])

a = np.array([[1,2,3],[3,4,5],[4,5,6]])
print (a)

slice items starting from index
print 'Now we will slice the array from the index a[1:]'
print (a[1:])

Example:

array to begin with
a = np.array([[1,2,3],[3,4,5],[4,5,6]])

print 'Our array is:'
print (a)

this returns array of items in the second column
print 'The items in the second column are:'
print (a[...,1])

Now we will slice all items from the second row
print 'The items in the second row are:'
print (a[1,...])

Now we will slice all items from column 1 onwards
print 'The items column 1 onwards are:'
print (a[...,1:])

Integer Indexing

• This mechanism helps in selecting any arbitrary
item in an array based on its N-dimensional
index.

• Each integer array represents the number of
indexes into that dimension.

• When the index consists of as many integer
arrays as the dimensions of the target ndarray,
it becomes straightforward.

Example:

import numpy as np
x = np.array([[1,2],[3,4],[5,6]])
y = x[[0,1,2],[0,1,0]]
print (y)

• One element of specified column from each row of ndarray
object is selected. Hence, the row index contains all row
numbers, and the column index specifies the element to be
selected.

• The selection includes elements at (0,0), (1,1) and (2,0) from
the first array.

Example:

import numpy as np
x = np.array([[0,1,2],[3,4,5],[6,7,8],
 [9,10,11]])
rows = np.array([[0,0],[3,3]])
cols = np.array([[0,2],[0,2]])
y = x[rows,cols]
print('The corner elements are:')
print(y)

• The elements placed at corners of a 4X3 array are
selected. The row indices of selection are [0, 0] and
[3,3] whereas the column indices are [0,2] and [0,2].

Advanced Slicing: Example

import numpy as np
x = np.array([[0,1,2],[3,4,5],[6,7,8],[9,10,11]])
print('Our array is:\n',x)

With slicing
z = x[1:4,1:3]
print('After slicing:\n',z)

Using advanced index for column
y = x[1:4,[1,2]]
print('Slicing advanced index:\n',y)

Boolean Array Indexing

• This type of advanced indexing is used when the
resultant object is meant to be the result of
Boolean operations, such as comparison
operators.

Example:

import numpy as np
x = np.array([[0,1,2],[3,4,5],[6,7,8],
 [9,10,11]])
print('Our array is:',x)

Now, items greater than 5
print('The items greater than 5:')
print(x[x > 5])

Finding nan and complex elements

import numpy as np
a = np.array([np.nan, 1,2,np.nan,3,4,5])
print(a[~np.isnan(a)])

import numpy as np
a = np.array([1, 2+6j, 5, 3.5+5j])
print(a[np.iscomplex(a)])

Broadcasting

• The term broadcasting refers to the ability of
NumPy to treat arrays of different shapes
during arithmetic operations.

• Arithmetic operations on arrays are usually
done on corresponding elements.

• If two arrays are of exactly the same shape,
then these operations are smoothly performed.

Lets take an example

import numpy as np

a = np.array([1,2,3,4])
b = np.array([10,20,30,40])
c = a * b
print(c)

Broadcasting

• If the dimensions of two arrays are dissimilar, element-to-
element operations are not possible. However, operations on
arrays of non-similar shapes is still possible in NumPy, because of
the broadcasting capability. The smaller array is broadcast to the
size of the larger array so that they have compatible shapes.

• Broadcasting is possible if the following rules are satisfied −
– Array with smaller ndim than the other is prepended with '1' in its

shape.
– Size in each dimension of the output shape is maximum of the input

sizes in that dimension.
– An input can be used in calculation, if its size in a particular dimension

matches the output size or its value is exactly 1.
– If an input has a dimension size of 1, the first data entry in that

dimension is used for all calculations along that dimension.

Broadcasting

• A set of arrays is said to be broadcastable if
the above rules produce a valid result and
one of the following is true −
– Arrays have exactly the same shape.
– Arrays have the same number of dimensions and

the length of each dimension is either a
common length or 1.

– Array having too few dimensions can have its
shape prepended with a dimension of length 1,
so that the above stated property is true.

•

Example: addition

import numpy as np
a = np.array([[0.0,0.0,0.0],[10.0,10.0,10.0],
 [20.0,20.0,20.0],[30.0,30.0,30.0]])
b = np.array([1.0,2.0,3.0])

print('First array:\n',a)
print('Second array:\b',b)

print('First Array + Second Array')
print(a + b)

How it does it?

Iterating over the array

• NumPy package contains an iterator
object numpy.nditer.

• It is an efficient multidimensional iterator
object using which it is possible to iterate
over an array.

• Each element of an array is visited using
Python’s standard Iterator interface.

Example:

import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)

print('Original array is:',a)

print('Modified array is:')
for x in np.nditer(a):
 print(x)

Replacement to MatLab

• NumPy is often used along with packages like SciPy
(Scientific Python) and Matplotlib (plotting library).

• This combination is widely used as a replacement
for MatLab, a popular platform for technical
computing.

• However, Python alternative to MatLab is now
seen as a more modern and complete
programming language.

• It is open source, which is an added advantage of
NumPy.

Installing numpy

• Standard Python distribution doesn't come bundled
with NumPy module. A lightweight alternative is to
install NumPy using popular Python package installer,
pip.

pip install numpy
sudo apt install python-numpy

• The best way to enable NumPy is to use an installable
binary package specific to your operating system.
– These binaries contain full SciPy stack (inclusive of NumPy,

SciPy, matplotlib, IPython, SymPy and nose packages along
with core Python).

Ndarray object

• The most important object defined in NumPy is
an N-dimensional array type called ndarray. It
describes the collection of items of the same
type.

• Items in the collection can be accessed using a
zero-based index.

• Every item in an ndarray takes the same size of
block in the memory.

• Each element in ndarray is an object of data-
type object (called dtype).

Ndarray object

• The most important object defined in NumPy is
an N-dimensional array type called ndarray. It
describes the collection of items of the same
type.

• Items in the collection can be accessed using a
zero-based index.

• Every item in an ndarray takes the same size of
block in the memory.

• Each element in ndarray is an object of data-
type object (called dtype).

What is numpy?

• NumPy is a Python package. It stands for 'Numerical
Python'. It is a library consisting of multidimensional
array objects and a collection of routines for
processing of array.

• Numeric, the ancestor of NumPy, was developed by
Jim Hugunin.

• Another package Numarray was also developed,
having some additional functionalities.

• In 2005, Travis Oliphant created NumPy package by
incorporating the features of Numarray into Numeric
package.

Operations using numpy

• Using NumPy, a developer can perform
the following operations −
– Mathematical and logical operations on

arrays.
– Fourier transforms and routines for shape

manipulation.
– Operations related to linear algebra. NumPy

has in-built functions for linear algebra and
random number generation.

Replacement to MatLab

• NumPy is often used along with packages like SciPy
(Scientific Python) and Matplotlib (plotting library).

• This combination is widely used as a replacement
for MatLab, a popular platform for technical
computing.

• However, Python alternative to MatLab is now
seen as a more modern and complete
programming language.

• It is open source, which is an added advantage of
NumPy.

Installing numpy

• Standard Python distribution doesn't come bundled
with NumPy module. A lightweight alternative is to
install NumPy using popular Python package installer,
pip.

pip install numpy
sudo apt install python-numpy

• The best way to enable NumPy is to use an installable
binary package specific to your operating system.
– These binaries contain full SciPy stack (inclusive of NumPy,

SciPy, matplotlib, IPython, SymPy and nose packages along
with core Python).

Ndarray object

• The most important object defined in NumPy is
an N-dimensional array type called ndarray. It
describes the collection of items of the same
type.

• Items in the collection can be accessed using a
zero-based index.

• Every item in an ndarray takes the same size of
block in the memory.

• Each element in ndarray is an object of data-
type object (called dtype).

Operations using numpy

• Using NumPy, a developer can perform
the following operations −
– Mathematical and logical operations on

arrays.
– Fourier transforms and routines for shape

manipulation.
– Operations related to linear algebra. NumPy

has in-built functions for linear algebra and
random number generation.

Replacement to MatLab

• NumPy is often used along with packages like SciPy
(Scientific Python) and Matplotlib (plotting library).

• This combination is widely used as a replacement
for MatLab, a popular platform for technical
computing.

• However, Python alternative to MatLab is now
seen as a more modern and complete
programming language.

• It is open source, which is an added advantage of
NumPy.

Installing numpy

• Standard Python distribution doesn't come bundled
with NumPy module. A lightweight alternative is to
install NumPy using popular Python package installer,
pip.

pip install numpy
sudo apt install python-numpy

• The best way to enable NumPy is to use an installable
binary package specific to your operating system.
– These binaries contain full SciPy stack (inclusive of NumPy,

SciPy, matplotlib, IPython, SymPy and nose packages along
with core Python).

Ndarray object

• The most important object defined in NumPy is
an N-dimensional array type called ndarray. It
describes the collection of items of the same
type.

• Items in the collection can be accessed using a
zero-based index.

• Every item in an ndarray takes the same size of
block in the memory.

• Each element in ndarray is an object of data-
type object (called dtype).

Ndarray object

• The most important object defined in NumPy is
an N-dimensional array type called ndarray. It
describes the collection of items of the same
type.

• Items in the collection can be accessed using a
zero-based index.

• Every item in an ndarray takes the same size of
block in the memory.

• Each element in ndarray is an object of data-
type object (called dtype).

What is numpy?

• NumPy is a Python package. It stands for 'Numerical
Python'. It is a library consisting of multidimensional
array objects and a collection of routines for
processing of array.

• Numeric, the ancestor of NumPy, was developed by
Jim Hugunin.

• Another package Numarray was also developed,
having some additional functionalities.

• In 2005, Travis Oliphant created NumPy package by
incorporating the features of Numarray into Numeric
package.

Operations using numpy

• Using NumPy, a developer can perform
the following operations −
– Mathematical and logical operations on

arrays.
– Fourier transforms and routines for shape

manipulation.
– Operations related to linear algebra. NumPy

has in-built functions for linear algebra and
random number generation.

Replacement to MatLab

• NumPy is often used along with packages like SciPy
(Scientific Python) and Matplotlib (plotting library).

• This combination is widely used as a replacement
for MatLab, a popular platform for technical
computing.

• However, Python alternative to MatLab is now
seen as a more modern and complete
programming language.

• It is open source, which is an added advantage of
NumPy.

Installing numpy

• Standard Python distribution doesn't come bundled
with NumPy module. A lightweight alternative is to
install NumPy using popular Python package installer,
pip.

pip install numpy
sudo apt install python-numpy

• The best way to enable NumPy is to use an installable
binary package specific to your operating system.
– These binaries contain full SciPy stack (inclusive of NumPy,

SciPy, matplotlib, IPython, SymPy and nose packages along
with core Python).

Ndarray object

• The most important object defined in NumPy is
an N-dimensional array type called ndarray. It
describes the collection of items of the same
type.

• Items in the collection can be accessed using a
zero-based index.

• Every item in an ndarray takes the same size of
block in the memory.

• Each element in ndarray is an object of data-
type object (called dtype).

Ndarray object

• The most important object defined in NumPy is
an N-dimensional array type called ndarray. It
describes the collection of items of the same
type.

• Items in the collection can be accessed using a
zero-based index.

• Every item in an ndarray takes the same size of
block in the memory.

• Each element in ndarray is an object of data-
type object (called dtype).

What is numpy?

• NumPy is a Python package. It stands for 'Numerical
Python'. It is a library consisting of multidimensional
array objects and a collection of routines for
processing of array.

• Numeric, the ancestor of NumPy, was developed by
Jim Hugunin.

• Another package Numarray was also developed,
having some additional functionalities.

• In 2005, Travis Oliphant created NumPy package by
incorporating the features of Numarray into Numeric
package.

Operations using numpy

• Using NumPy, a developer can perform
the following operations −
– Mathematical and logical operations on

arrays.
– Fourier transforms and routines for shape

manipulation.
– Operations related to linear algebra. NumPy

has in-built functions for linear algebra and
random number generation.

Replacement to MatLab

• NumPy is often used along with packages like SciPy
(Scientific Python) and Matplotlib (plotting library).

• This combination is widely used as a replacement
for MatLab, a popular platform for technical
computing.

• However, Python alternative to MatLab is now
seen as a more modern and complete
programming language.

• It is open source, which is an added advantage of
NumPy.

Installing numpy

• Standard Python distribution doesn't come bundled
with NumPy module. A lightweight alternative is to
install NumPy using popular Python package installer,
pip.

pip install numpy
sudo apt install python-numpy

• The best way to enable NumPy is to use an installable
binary package specific to your operating system.
– These binaries contain full SciPy stack (inclusive of NumPy,

SciPy, matplotlib, IPython, SymPy and nose packages along
with core Python).

Ndarray object

• The most important object defined in NumPy is
an N-dimensional array type called ndarray. It
describes the collection of items of the same
type.

• Items in the collection can be accessed using a
zero-based index.

• Every item in an ndarray takes the same size of
block in the memory.

• Each element in ndarray is an object of data-
type object (called dtype).

Operations using numpy

• Using NumPy, a developer can perform
the following operations −
– Mathematical and logical operations on

arrays.
– Fourier transforms and routines for shape

manipulation.
– Operations related to linear algebra. NumPy

has in-built functions for linear algebra and
random number generation.

Replacement to MatLab

• NumPy is often used along with packages like SciPy
(Scientific Python) and Matplotlib (plotting library).

• This combination is widely used as a replacement
for MatLab, a popular platform for technical
computing.

• However, Python alternative to MatLab is now
seen as a more modern and complete
programming language.

• It is open source, which is an added advantage of
NumPy.

Installing numpy

• Standard Python distribution doesn't come bundled
with NumPy module. A lightweight alternative is to
install NumPy using popular Python package installer,
pip.

pip install numpy
sudo apt install python-numpy

• The best way to enable NumPy is to use an installable
binary package specific to your operating system.
– These binaries contain full SciPy stack (inclusive of NumPy,

SciPy, matplotlib, IPython, SymPy and nose packages along
with core Python).

Ndarray object

• The most important object defined in NumPy is
an N-dimensional array type called ndarray. It
describes the collection of items of the same
type.

• Items in the collection can be accessed using a
zero-based index.

• Every item in an ndarray takes the same size of
block in the memory.

• Each element in ndarray is an object of data-
type object (called dtype).

Ndarray object

• The most important object defined in NumPy is
an N-dimensional array type called ndarray. It
describes the collection of items of the same
type.

• Items in the collection can be accessed using a
zero-based index.

• Every item in an ndarray takes the same size of
block in the memory.

• Each element in ndarray is an object of data-
type object (called dtype).

What is numpy?

• NumPy is a Python package. It stands for 'Numerical
Python'. It is a library consisting of multidimensional
array objects and a collection of routines for
processing of array.

• Numeric, the ancestor of NumPy, was developed by
Jim Hugunin.

• Another package Numarray was also developed,
having some additional functionalities.

• In 2005, Travis Oliphant created NumPy package by
incorporating the features of Numarray into Numeric
package.

Operations using numpy

• Using NumPy, a developer can perform
the following operations −
– Mathematical and logical operations on

arrays.
– Fourier transforms and routines for shape

manipulation.
– Operations related to linear algebra. NumPy

has in-built functions for linear algebra and
random number generation.

Replacement to MatLab

• NumPy is often used along with packages like SciPy
(Scientific Python) and Matplotlib (plotting library).

• This combination is widely used as a replacement
for MatLab, a popular platform for technical
computing.

• However, Python alternative to MatLab is now
seen as a more modern and complete
programming language.

• It is open source, which is an added advantage of
NumPy.

Installing numpy

• Standard Python distribution doesn't come bundled
with NumPy module. A lightweight alternative is to
install NumPy using popular Python package installer,
pip.

pip install numpy
sudo apt install python-numpy

• The best way to enable NumPy is to use an installable
binary package specific to your operating system.
– These binaries contain full SciPy stack (inclusive of NumPy,

SciPy, matplotlib, IPython, SymPy and nose packages along
with core Python).

Ndarray object

• The most important object defined in NumPy is
an N-dimensional array type called ndarray. It
describes the collection of items of the same
type.

• Items in the collection can be accessed using a
zero-based index.

• Every item in an ndarray takes the same size of
block in the memory.

• Each element in ndarray is an object of data-
type object (called dtype).

Ndarray object

• The most important object defined in NumPy is
an N-dimensional array type called ndarray. It
describes the collection of items of the same
type.

• Items in the collection can be accessed using a
zero-based index.

• Every item in an ndarray takes the same size of
block in the memory.

• Each element in ndarray is an object of data-
type object (called dtype).

What is numpy?

• NumPy is a Python package. It stands for 'Numerical
Python'. It is a library consisting of multidimensional
array objects and a collection of routines for
processing of array.

• Numeric, the ancestor of NumPy, was developed by
Jim Hugunin.

• Another package Numarray was also developed,
having some additional functionalities.

• In 2005, Travis Oliphant created NumPy package by
incorporating the features of Numarray into Numeric
package.

Operations using numpy

• Using NumPy, a developer can perform
the following operations −
– Mathematical and logical operations on

arrays.
– Fourier transforms and routines for shape

manipulation.
– Operations related to linear algebra. NumPy

has in-built functions for linear algebra and
random number generation.

Replacement to MatLab

• NumPy is often used along with packages like SciPy
(Scientific Python) and Matplotlib (plotting library).

• This combination is widely used as a replacement
for MatLab, a popular platform for technical
computing.

• However, Python alternative to MatLab is now
seen as a more modern and complete
programming language.

• It is open source, which is an added advantage of
NumPy.

Installing numpy

• Standard Python distribution doesn't come bundled
with NumPy module. A lightweight alternative is to
install NumPy using popular Python package installer,
pip.

pip install numpy
sudo apt install python-numpy

• The best way to enable NumPy is to use an installable
binary package specific to your operating system.
– These binaries contain full SciPy stack (inclusive of NumPy,

SciPy, matplotlib, IPython, SymPy and nose packages along
with core Python).

Ndarray object

• The most important object defined in NumPy is
an N-dimensional array type called ndarray. It
describes the collection of items of the same
type.

• Items in the collection can be accessed using a
zero-based index.

• Every item in an ndarray takes the same size of
block in the memory.

• Each element in ndarray is an object of data-
type object (called dtype).

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 7.4.1.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

@mITuSkillologies @mitu_group

contact@mitu.co.in

@mitu-skillologies @MITUSkillologies

@mituskillologies@mituskillologies

mailto:tushar@tusharkute.com
https://mitu.co.in/
http://tusharkute.com/
mailto:contact@mitu.co.in
https://instagram.com/mitu_skillologies
https://fb.com/MITUSkillologies
https://twitter.com/mitu_group
https://www.linkedin.com/company/mitu-skillologies/
https://youtube.com/MITUSkillologies
https://github.com/mituskillologies/
https://www.kaggle.com/mituskillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98

