
Database Transactions

Tushar B. Kute,
http://tusharkute.com

What is Database?

• A database is an organized collection of data, so that
it can be easily accessed and managed.

• You can organize data into tables, rows, columns, and
index it to make it easier to find relevant information.

• Database handlers create a database in such a way
that only one set of software program provides
access of data to all the users.

• The main purpose of the database is to operate a
large amount of information by storing, retrieving,
and managing data.

What is Database Management System?

• A database management system (DBMS) is system
software for creating and managing databases.

• A DBMS makes it possible for end users to create,
protect, read, update and delete data in a database.

• The most prevalent type of data management
platform, the DBMS essentially serves as an
interface between databases and users or
application programs, ensuring that data is
consistently organized and remains easily
accessible.

What DBMS do?

• The DBMS manages the data; the database engine allows data
to be accessed, locked and modified; and the database schema
defines the database's logical structure.

• These three foundational elements help provide concurrency,
security, data integrity and uniform data administration
procedures.

• The DBMS supports many typical database administration
tasks, including change management, performance monitoring
and tuning, security, and backup and recovery.

• Most database management systems are also responsible for
automated rollbacks and restarts as well as logging and
auditing of activity in databases and the applications that
access them.

DBMS Components

• A DBMS is a sophisticated piece of system software
consisting of multiple integrated components that
deliver a consistent, managed environment for
creating, accessing and modifying data in databases

Storage Engine

• This basic element of a DBMS is used to store data.
The DBMS must interface with a file system at the
operating system (OS) level to store data.

• It can use additional components to store data or
interface with the actual data at the file system
level.

What is SQL?

• SQL is the standard language for dealing with
Relational Databases.

• SQL can be used to insert, search, update, and delete
database records. SQL can do lots of other operations,
including optimizing and maintenance of databases.

• SQL Full Form
– SQL stands for Structured Query language,

pronounced as “S-Q-L” or sometimes as “See-Quel”…
Relational databases like MySQL Database, Oracle,
MS SQL Server, Sybase, etc. use ANSI SQL.

MySQL

• MySQL is released under an open-source license. So you
have nothing to pay to use it.

• MySQL is a very powerful program in its own right. It
handles a large subset of the functionality of the most
expensive and powerful database packages.

• MySQL uses a standard form of the well-known SQL data
language.

• MySQL works on many operating systems and with many
languages including Python, PHP, PERL, C, C++, JAVA, etc.

• MySQL works very quickly and works well even with large
data sets.

MySQL

• MySQL works very quickly and works well even with large
data sets.

• MySQL is very friendly to PHP, the most appreciated
language for web development.

• MySQL supports large databases, up to 50 million rows or
more in a table. The default file size limit for a table is
4GB, but you can increase this (if your operating system
can handle it) to a theoretical limit of 8 million terabytes
(TB).

• MySQL is customizable. The open-source GPL license
allows programmers to modify the MySQL software to fit
their own specific environments.

Types of SQL Statements

• Here are five types of widely used SQL queries.
– Data Definition Language (DDL)
– Data Manipulation Language (DML)
– Data Control Language (DCL)
– Transaction Control Language (TCL)
– Data Query Language (DQL)

MySQL Clients

• MYSQL Client are programs for communicating
with the server to manipulate the information
in the databases that the server manages.

• Example : mysql is the command line program
that acts as a text-based front end for the
server.

MySQL Workbench

• MySQL Workbench is a unified visual tool for
database architects, developers, and DBAs.

• MySQL Workbench provides data modeling, SQL
development, and comprehensive administration
tools for server configuration, user administration,
backup, and much more.

• MySQL Workbench is available on Windows, Linux
and Mac OS X.

MySQL Shell

• The MySQL Shell is an interactive Javascript,
Python, or SQL interface supporting development
and administration for the MySQL Server and is a
component of the MySQL Server.

• You can use the MySQL Shell to perform data
queries and updates as well as various
administration operations.

Database Transaction

• A database transaction is a sequence of operations or
tasks performed on a database that are treated as a single
unit.

• A transaction ensures that the database remains in a
consistent and reliable state, even in the event of a
system failure, crash, or interruption during the operation.

• Transactions are fundamental to database management
systems (DBMS) because they ensure data integrity,
consistency, and reliability.

• A transaction involves operations like INSERT, UPDATE,
DELETE, or SELECT on the database.

Database Transaction

Database Transaction

• A database transaction is considered to be atomic,
meaning that it either completes entirely or does
not happen at all.

• This is critical to maintaining the ACID properties
(Atomicity, Consistency, Isolation, and Durability) of
a transaction.

ACID

ACID

• Atomicity:
– A transaction is indivisible. It either completes

entirely or has no effect at all. If one part of the
transaction fails, the whole transaction is rolled
back.

• Consistency:
– A transaction brings the database from one valid

state to another valid state. All integrity
constraints are maintained during the transaction,
and the database is consistent before and after
the transaction.

ACID

• Isolation:
– Transactions are isolated from each other. Even though

multiple transactions might be executed
simultaneously, each transaction should not affect the
others. Intermediate states of a transaction are not
visible to other transactions until the transaction is
committed.

• Durability:
– Once a transaction is committed, its changes are

permanent, even if there is a system failure. The data
changes made by the transaction are saved to the
database and are not lost.

Real World Example

• Consider a banking system where you want to transfer money
from Account A to Account B. The transaction would involve
two steps:
– Subtracting money from Account A (e.g., debit).
– Adding money to Account B (e.g., credit).

• This entire operation is a single transaction, and both operations
need to be completed successfully.

• If the system fails or crashes after the debit but before the
credit, the transaction should rollback, ensuring that the money
is neither deducted from Account A nor added to Account B.

• If the transaction completes successfully, the changes are
committed, and both accounts reflect the new balances.

Atomicity

• Atomicity ensures that a transaction is an all-or-
nothing operation.

• This means that either all the operations within the
transaction are completed successfully, or if any
part of the transaction fails, the whole transaction
is rolled back, and the database remains
unchanged.

Atomicity

• Example: Imagine you are transferring money between two bank
accounts:
– Account A has $500.
– Account B has $300.

• You want to transfer $100 from Account A to Account B.

• Steps in the Transaction:
– Subtract $100 from Account A.
– Add $100 to Account B.

• If the system crashes after the first step (subtracting from Account
A) but before the second step (adding to Account B), atomicity
ensures that the transaction is rolled back, and Account A will not
be deducted $100. Both accounts will remain in their original state,
preventing an inconsistent database.

Atomicity

Transaction Example

• START TRANSACTION;

• -- Operation 1: Deduct $100 from Account A

• UPDATE accounts SET balance = balance - 100 WHERE
account_id = 'A';

• -- Operation 2: Add $100 to Account B

• UPDATE accounts SET balance = balance + 100 WHERE
account_id = 'B';

• -- If both operations are successful, commit the transaction

• COMMIT;

Consistency

• Consistency ensures that a transaction takes the
database from one valid state to another valid
state, adhering to all predefined rules, constraints,
and triggers.

• After the transaction, the database must remain
consistent and satisfy all integrity constraints, like
foreign keys, unique constraints, and more.

Consistency

• Example: Let's consider a database with a Students table and an Enrollment
table.
– Students Table: Contains student data (e.g., student_id, name, balance).
– Enrollment Table: Contains course enrollment data (e.g., student_id,

course_id).

• A student has a balance of $500, and the rule is that a student must have a
balance greater than $100 to enroll in a course.

• Transaction Example:
– Check the student’s balance: Ensure the student has enough balance to enroll.
– Enroll the student in a course: Deduct the course fee from the student's

balance.
– Commit: If the balance is valid and the enrollment is successful, commit the

transaction.

• If the student’s balance is insufficient, the transaction is rolled back to ensure
the integrity of the database.

Isolation

• Isolation ensures that concurrent transactions do
not interfere with each other.

• Each transaction should execute as if it is the only
transaction in the system, meaning that
intermediate results of one transaction are invisible
to other transactions until the transaction is
committed.

Isolation

• Example: Consider two transactions happening simultaneously:
– Transaction 1: A bank account transfer is happening from Account A to

Account B.
– Transaction 2: Another user is viewing the account balance of Account A.

• Scenario: Both transactions should not see inconsistent or intermediate results
of each other. For instance, Transaction 2 should not see the balance of Account
A as if the money was already deducted when Transaction 1 is still in progress.
– Transaction 1: Subtract money from Account A and add money to Account B.
– Transaction 2: Check the balance of Account A.

• In an isolated environment, Transaction 2 should either see the balance before
Transaction 1 starts or after it finishes — not an inconsistent intermediate
balance.

• This is controlled by different isolation levels (Read Uncommitted, Read
Committed, Repeatable Read, Serializable). The higher the isolation level, the
less interference there is between transactions.

Isolation

Durability

• Durability ensures that once a transaction is
committed, its changes are permanent and survive
system failures, such as crashes, power outages, or
hardware failures.

• The changes made by the transaction are stored in
the database and are guaranteed not to be lost.

Durability

• Example: Let's say a customer places an order on an e-
commerce platform:
– The platform updates the Orders table to reflect the new

order and deducts the stock from the Products table.

• Scenario:
– If the system crashes after the transaction has been

committed (e.g., the order is confirmed and saved), the
changes will not be lost. The Orders table will reflect the new
order, and the stock in the Products table will show the
updated quantity.

– If the system crashes before the commit, the transaction will
be rolled back, and no changes will be made to the database,
preserving consistency.

Durability

Summary

Transaction Managament

• Transaction management in a Database Management
System (DBMS) refers to the process of managing
transactions to ensure data consistency, integrity, and
reliability.

• Transactions are sequences of operations performed as a
single unit of work, which is crucial in maintaining the
ACID properties (Atomicity, Consistency, Isolation, and
Durability).

• A transaction management system helps control how
transactions are handled and provides mechanisms for
concurrency control, recovery, and ensuring the ACID
properties.

Transaction Managament: Components

• Transaction:
– A transaction is a logical unit of work that

contains one or more operations (e.g., INSERT,
UPDATE, DELETE) on the database.

– A transaction ensures that the database moves
from one consistent state to another while
maintaining the integrity of data.

Transaction Managament: Components

• Transaction Log:
– The transaction log is a record of all transactions

and the changes they make to the database. It
helps in recovery (in case of a system failure).

– Each transaction in the log has information
about what operations it performed (e.g., which
records were modified, what values were
updated, etc.).

Transaction Managament: Components

• Transaction States:
– A transaction passes through several states during its lifetime:
• Active: The transaction is being executed.
• Partially Committed: The transaction has executed its final

operation but has not yet been committed.
• Committed: The transaction has been completed

successfully, and all changes are permanent.
• Failed: An error occurred during the transaction, and it is in

an inconsistent state.
• Aborted: The transaction has been rolled back, and the

database is restored to its state before the transaction
began.

Transaction Managament: Components

Transaction Control in DBMS

• Transaction Control Language (TCL) is a critical
component of SQL used to manage transactions
and ensure data integrity in relational databases.

• By using TCL commands, we can control how
changes to the database are committed or
reverted, maintaining consistency across multiple
operations.

Transaction Managament: Components

• Transaction Control Commands:
– START TRANSACTION / BEGIN TRANSACTION: Starts a

new transaction.
– COMMIT: Saves the changes made by the transaction to

the database permanently.
– ROLLBACK: Cancels the changes made by the transaction

and restores the database to its previous state.
– SAVEPOINT: Sets a point within a transaction to which

you can later roll back.
– SET TRANSACTION: Defines the properties of a

transaction, such as isolation level.

Commit

• The COMMIT command is used to save all the
transactions to the database that have been performed
during the current transaction.

• Once a transaction is committed, it becomes permanent
and cannot be undone.

• This command is typically used at the end of a series of
SQL statements to ensure that all changes made during
the transaction are saved.
– Syntax:
• COMMIT;

Commit

• mysql> USE school;
• mysql> CREATE TABLE t_school….
• mysql> START TRANSACTION;
• mysql> INSERT INTO t_school…….
• mysql> SELECT *FROM t_school;
• mysql> COMMIT;

Commit

• Autocommit is by default enabled in MySQL. To turn
it off, we will set the value of autocommit as 0.

mysql> SET autocommit = 0;

• MySQL, by default, commits every query the user
executes. But if the user wishes to commit only the
specific queries instead of committing every query,
then turning off the autocommit is useful.

Rollback

• The ROLLBACK command is used to undo all the
transactions that have been performed during the
current transaction but have not yet been committed.

• This command is useful for reverting the database to its
previous state in case an error occurs or if the changes
made are not desired.

• Syntax:
– ROLLBACK;

Savepoint

• The SAVEPOINT command is used to set a point within a
transaction to which we can later roll back.

• This command allows for partial rollbacks within a
transaction, providing more control over which parts of
a transaction to undo.

• Syntax:
– SAVEPOINT savepoint_name;

Rollback

• mysql> USE bank;
• mysql> CREATE TABLE customer….
• mysql> INSERT INTO customer….
• mysql> SELECT *FROM customer;
• mysql> START TRANSACTION;
• mysql> SAVEPOINT Insertion;
• mysql> DELETE FROM customer WHERE….
• mysql> SELECT *FROM customer;
• mysql> SAVEPOINT Deletion;
• mysql> ROLLBACK TO Insertion;
• mysql> SELECT *FROM customer;

Set Transaction

• The SET TRANSACTION statement is used to
configure the properties of a transaction, such as
isolation level or read-write behavior.

• Example:
– SET TRANSACTION ISOLATION LEVEL

SERIALIZABLE;

Commit Protocols

• Commit protocols in a Database Management System
(DBMS) are mechanisms used to ensure that a
transaction is either successfully committed or
completely rolled back.

• These protocols play an essential role in managing the
commit phase of transactions to ensure consistency,
durability, and atomicity in a multi-user or distributed
environment.

• A commit protocol defines the rules and procedures
followed by the DBMS to safely complete a transaction
and make its changes permanent in the database.

Commit Protocols

• There are several commit protocols used in DBMS
to handle transaction commits, especially when
dealing with distributed transactions.

• Some of the most common commit protocols are:
– Immediate Commit Protocol
– Deferred Commit Protocol
– Two-Phase Commit (2PC) Protocol
– Three-Phase Commit (3PC) Protocol

Commit Protocols

Immediate Commit Protocol

• In the Immediate Commit Protocol, once a transaction
reaches its commit point, the DBMS immediately
writes all changes made by the transaction to the
database and the transaction is considered committed.
– The transaction begins by performing operations

(such as INSERT, UPDATE, DELETE) on the database.
– When the transaction reaches its commit point, all

changes are immediately written to disk.
– If any failure occurs during the transaction, it will be

rolled back completely, and no changes will be saved
to the database.

Immediate Commit Protocol

• Advantages:
– Simple and efficient when working with a single

database instance.
– Ensures that once the transaction is committed,

all changes are immediately saved.

• Disadvantages:
– Not ideal in a distributed database environment

where multiple nodes need to coordinate the
commit process.

Deferred Commit Protocol

• The Deferred Commit Protocol delays the actual writing of
changes to the database until the transaction has been committed.

• Instead of immediately committing changes, the changes are kept
in memory and only written to the database at the commit point.
– A transaction performs all of its operations (e.g., inserts,

updates).
– Instead of writing the changes to the database immediately, the

system defers the actual commit process.
– When the transaction reaches the commit point, all changes are

written to the database at once.
– If any failure happens before the commit, all changes are

discarded, and no changes are applied to the database.

Deferred Commit Protocol

• Advantages:
– It reduces the number of write operations to the

database.
– Ensures that only committed transactions affect the

database, minimizing the risk of partial updates.

• Disadvantages:
– If there is a failure before the commit, changes made by

the transaction are lost, and the transaction must be
retried.

– It is not suitable for high-concurrency environments
where multiple transactions are simultaneously running.

Two-Phase Commit (2PC) Protocol

• The Two-Phase Commit (2PC) protocol is used in
distributed databases to ensure that a transaction
is either committed or rolled back across all
participating databases in the same way.

• It ensures atomicity and consistency in distributed
transactions.

Two-Phase Commit (2PC) Protocol

• The Two-Phase Commit (2PC) protocol consists of two phases:
– Phase 1: Prepare Phase:
• The coordinator (or transaction manager) sends a prepare

message to all participants (nodes or databases) involved in
the transaction.
• Each participant responds with either a Yes (if they are ready

to commit) or No (if there is any issue).
– Phase 2: Commit or Abort Phase:
• If all participants reply Yes, the coordinator sends a commit

message, and the transaction is committed across all nodes.
• If any participant replies No, the coordinator sends an abort

message, and the transaction is rolled back on all nodes.

Two-Phase Commit (2PC) Protocol

Two-Phase Commit (2PC) Protocol

• Advantages:
– Ensures consistency across distributed systems.
– All participating nodes either commit the transaction or all abort, ensuring

atomicity.

• Disadvantages:
– Blocking: If the coordinator fails during the process, the transaction may

be blocked because participants are waiting for the final decision (commit
or abort).

– Single point of failure: The failure of the coordinator can prevent progress.

• Example of 2PC Process:
– Coordinator sends a Prepare request to all participants.
– Each Participant responds with Yes or No.
– If all participants say Yes, the Coordinator sends a Commit message. If any

participant says No, the Coordinator sends an Abort message.

Three-Phase Commit (2PC) Protocol

• The Three-Phase Commit (3PC) protocol is an
extension of the Two-Phase Commit protocol
designed to overcome some of the limitations of
2PC, particularly the blocking problem.

• It ensures that a transaction is either fully
committed or fully aborted, even in the case of
coordinator or participant failures.

Three-Phase Commit (2PC) Protocol

• Phase 1: CanCommit Phase:
– The coordinator sends a CanCommit message to all participants to check if

they can prepare to commit.
– The participants respond with either Yes (ready to commit) or No (unable to

commit).

• Phase 2: PreCommit Phase:
– If all participants respond Yes, the coordinator sends a PreCommit message

to all participants.
– The participants acknowledge that they are ready to commit and will write

the transaction to a non-volatile storage.

• Phase 3: Commit/Abort Phase:
– Once all participants respond with an acknowledgment, the coordinator

sends the Commit message to confirm the transaction.
– If there is any failure, the coordinator sends an Abort message, and the

transaction is rolled back.

Three-Phase Commit (2PC) Protocol

Three-Phase Commit (2PC) Protocol

• Advantages:
– Non-blocking: In case of a failure, the protocol ensures

that participants can move to the next step or abort the
transaction without being blocked indefinitely.

– Fault-tolerant: The protocol can handle some failures
better than 2PC by introducing an additional phase for
recovery.

• Disadvantages:
– Increased complexity in comparison to the 2PC protocol.
– Still, in some failure conditions, the transaction may not

be fully resolved (e.g., if the coordinator fails at an
inappropriate time).

Three-Phase Commit (2PC) Protocol

• Example of 3PC Process:
– Coordinator sends a CanCommit request.
– Participants respond with Yes or No.
– If Yes, the Coordinator sends a PreCommit message.
– After acknowledgment, the Coordinator sends a

Commit message.
– If failure occurs, the Coordinator sends an Abort

message.

Protocols: Summary

• Commit protocols in DBMS ensure that transactions are either
fully committed or fully rolled back, maintaining the ACID
properties of transactions.

• In a distributed system, Two-Phase Commit (2PC) is a widely
used protocol for coordinating commits across multiple
databases, while Three-Phase Commit (3PC) improves upon
2PC to provide fault tolerance and non-blocking behavior.

• Immediate Commit and Deferred Commit are simpler protocols
used in local databases or environments where transactions are
not distributed.

• The choice of commit protocol depends on the system's
requirements, particularly in terms of fault tolerance,
complexity, and transaction coordination.

Schedule

• A schedule is a sequence of operations (transactions)
that are executed, such that the interleaving of those
operations preserves the consistency of the database
and ensures correctness in a multi-user environment.

• A schedule is essentially the order in which the
operations (like read, write, commit, etc.) of different
transactions are executed.

• Since multiple transactions may be running concurrently
in a DBMS, a schedule defines how these transactions
are interleaved, and whether their execution results in a
valid final state of the database.

Schedule: Basic Operations

• Each transaction typically involves several operations,
such as:
– Read (R): A transaction reads a data item.
– Write (W): A transaction writes a value to a data item.
– Commit (C): A transaction successfully completes,

and its changes are saved.
– Abort (A): A transaction is rolled back due to an error

or failure.

Schedule: Types

• There are different types of schedules based on the
rules governing the order of transaction operations.

• The key types are:
– Serial Schedule
– Non-Serial Schedule
– Recoverable Schedule
– Cascadeless Schedule
– View Serializable Schedule
– Conflict Serializable Schedule

Schedule: Types

Serial Schedule

• A serial schedule is one in which the operations of the
transactions are executed one after another, without
any interleaving of operations.

• In a serial schedule, the transactions do not overlap, and
the execution of each transaction is completed before
the next one begins.

• Example:
– Consider two transactions, T1 and T2:
• T1: Read(A), Write(A)
• T2: Read(B), Write(B)

Serial Schedule

• A serial schedule could be:
– T1: Read(A), Write(A)
– T2: Read(B), Write(B)

• OR:
– T2: Read(B), Write(B)
– T1: Read(A), Write(A)

• Since transactions are executed in isolation (one after
the other), serial schedules are always consistent, but
they do not take advantage of concurrent execution
and may be inefficient.

Non-Serial Schedule

• A non-serial schedule is one in which the operations of multiple
transactions are interleaved, i.e., the operations of one transaction
are mixed with operations of another transaction.

• Non-serial schedules can increase concurrency, leading to better
performance, but they require mechanisms to ensure that the
schedule results in a valid final state.

• Consider the following interleaved schedule:
– T1: Read(A), Write(A)
– T2: Read(B), Write(B)
– T1: Read(B), Write(B)
– T2: Read(A), Write(A)

• This schedule is non-serial because the operations of T1 and T2 are
interleaved.

Non-Serial Schedule

Recoverable Schedule

• A recoverable schedule ensures that if a transaction T2
depends on a transaction T1 (e.g., reading a value written by
T1), T2 is only allowed to commit after T1 commits. This
prevents situations where a transaction reads uncommitted
data from another transaction that eventually aborts.

• Example:
– If T2 reads a value written by T1, T2 must commit only if T1

commits.
– If T1 aborts, T2 must also abort.

• A recoverable schedule prevents situations where a
transaction's result might depend on another transaction
that has not yet committed, avoiding the issue of dirty reads.

Recoverable Schedule

Cascadeless Schedule

• A cascadeless schedule is one in which a transaction never
reads uncommitted data (i.e., no dirty reads). This type of
schedule ensures that transactions that read values only do
so after the transaction that wrote those values has
committed.
– T1 writes a value to a data item, and T2 can read that

value only after T1 has committed. This avoids the
problem of transactions depending on uncommitted data.

• Advantages:
– Prevents the cascading rollback problem, where the

failure of one transaction leads to the need to roll back
several others.

Cascadeless Schedule

View Serializable Schedule

• A schedule is view serializable if, by permuting the operations
in the schedule (while respecting the operation order within
individual transactions), it can be converted into a serial
schedule. This is a weaker form of serializability than conflict
serializability but still ensures that the final outcome of the
transactions is the same as if the transactions were executed
serially.

• Conditions for View Serializability:
– The initial reads of all transactions must be the same.
– The final writes of all transactions must be the same.
– If a transaction reads a value written by another transaction,

the final write must be consistent with the reading.

Conflict Serializable Schedule

• A conflict serializable schedule is one that can be
transformed into a serial schedule by swapping
non-conflicting operations.

• Two operations conflict if they belong to different
transactions and access the same data item, and at
least one of them is a write.

Conflict Serializable Schedule

• Consider the following non-serial schedule:
– T1: Read(A), Write(A)
– T2: Read(B), Write(B)
– T1: Write(B)
– T2: Write(A)

• In this case, we can swap the operations of T1 and T2 to
form a serial schedule, maintaining the consistency of the
database.

• Conflict serializability is a stronger condition than view
serializability and ensures that the final database state
remains consistent regardless of transaction interleaving.

Schedule Properties

• Serializability:
– The schedule should be serializable, meaning that the final result

of the interleaved operations is the same as if the transactions had
been executed one by one (serially).

• Recoverability:
– A schedule is recoverable if, after a transaction writes a value, no

other transaction reads it before the first transaction commits.

• Cascadeless:
– A schedule is cascadeless if transactions never read uncommitted

data from other transactions, thereby avoiding cascading rollbacks.

• Conflict Serializability:
– A schedule is conflict serializable if it can be converted into a serial

schedule by swapping non-conflicting operations.

Serializability

• Schedule 1 (Conflict Serializable)
– T1: Read(A), Write(A)
– T2: Read(B), Write(B)
– T1: Write(B)
– T2: Write(A)

• This schedule is conflict serializable because you can
rearrange the operations to form a serial schedule:
– T1: Read(A), Write(A), Write(B)
– T2: Read(B), Write(A)

Serializability

• Schedule 2 (View Serializable but not Conflict
Serializable)
– T1: Write(A)
– T2: Read(A), Write(A)

• This schedule is view serializable but not conflict
serializable.

• While the result of this schedule can be made
equivalent to a serial schedule by changing the order,
the conflict serializability condition is violated due to
overlapping write and read operations on the same
data.

Concurrency Control

Concurrency Control

• Concurrency control is a mechanism used in a Database
Management System (DBMS) to ensure that the database
remains consistent and accurate while handling multiple
transactions simultaneously.

• In a multi-user environment, where multiple transactions can
access the database at the same time, it’s important to manage
how these transactions interact with each other to prevent
conflicts, such as lost updates, dirty reads, uncommitted data,
and inconsistent reads.

• Concurrency control ensures that the ACID properties (Atomicity,
Consistency, Isolation, and Durability) are maintained,
particularly the Isolation property, which isolates the operations
of a transaction from those of other transactions.

Concurrency Control

Concurrency Control: Key Issues

• Lost Updates:
– When two transactions try to update the same

data simultaneously, and one of the updates is
overwritten, resulting in the loss of data.

• Temporary Inconsistency (Dirty Reads):
– When one transaction reads data that is

modified by another transaction that has not yet
been committed, causing the first transaction to
operate on inconsistent or incorrect data.

Concurrency Control: Key Issues

• Uncommitted Data:
– A transaction reads data that has been modified but not

committed by another transaction. If the second transaction is
rolled back, the first transaction might be using invalid data.

• Non-repeatable Reads:
– A transaction reads the same data multiple times, but the

value changes between reads because of another
transaction's update.

• Phantom Reads:
– A transaction reads a set of data based on a query, but

another transaction inserts, deletes, or updates data that
affects the result of the query.

Concurrency Control: Techniques

• Lock-based Concurrency Control

• Timestamp-based Concurrency Control

• Optimistic Concurrency Control

• Multiversion Concurrency Control (MVCC)

1. Lock-based Concurrency Control

• In this method, locks are used to control access to data items.
When a transaction needs to read or write a data item, it
acquires a lock on that item to prevent other transactions from
interfering with it. There are different types of locks used in
this technique:
– Shared Lock (S-lock): A shared lock allows multiple

transactions to read the same data item concurrently.
However, no transaction can modify the data item while it is
locked with a shared lock.

– Exclusive Lock (X-lock): An exclusive lock is acquired when a
transaction intends to write (modify) a data item. When a
data item has an exclusive lock, no other transaction can
read or write that item until the lock is released.

1. Lock-based Concurrency Control

• Two-Phase Locking (2PL): This protocol ensures that transactions
acquire locks in two phases—growing (acquiring locks) and shrinking
(releasing locks).

• Once a transaction releases a lock, it cannot acquire any more locks.
This protocol guarantees serializability.

• Example:
– Transaction 1 acquires a shared lock on a data item and reads it.
– Transaction 2 also acquires a shared lock and reads the same data

item.
– Transaction 1 then acquires an exclusive lock and updates the data

item.
– Transaction 1 releases the lock after committing, and only then can

Transaction 2 acquire an exclusive lock to update the data item.

1. Lock-based Concurrency Control

Deadlock

• A situation where two or more transactions are
blocked because they each hold a lock that the
other transaction needs.

• Deadlock detection and resolution mechanisms are
used to prevent this.

Timestamp-based Concurrency Control

• Each transaction is assigned a unique timestamp when it starts.
This timestamp is used to order transactions and ensure that they
are executed in a serializable manner. The two primary operations
are:
– Transaction Ordering: If two transactions T1 and T2 conflict

(access the same data item), the one with the smaller timestamp
is allowed to proceed, and the one with the larger timestamp is
rolled back if it conflicts with the first transaction.

– Basic Protocol: The transaction that requests a data item checks
if the timestamp of the transaction matches the read/write
request. If there is a conflict (e.g., a transaction tries to write a
value that has been read by another transaction), the system will
determine which transaction should proceed based on the
timestamps.

Timestamp-based Concurrency Control

Optimistic Concurrency Control (OCC)

• Optimistic concurrency control is based on the
assumption that conflicts between transactions are
rare.

• The basic idea is to allow transactions to execute
without locking data, and only check for conflicts
before committing the transaction.

• This approach works well in situations where read-
heavy workloads are common.

Optimistic Concurrency Control (OCC)

• Steps:
– Transaction Execution: A transaction executes without

acquiring any locks, and performs its operations on the
data.

– Validation Phase: Before committing, the transaction is
validated to check if it conflicts with any other transaction.
This is usually done by checking whether any other
transaction has modified the same data that the current
transaction has read or written.

– Commit or Rollback: If the transaction passes the validation
phase (i.e., no conflict), it is committed. If conflicts are
found, the transaction is rolled back and retried.

Optimistic Concurrency Control (OCC)

Optimistic Concurrency Control (OCC)

• Example:
– Transaction T1 reads and writes data without

locking the data.
– Before T1 commits, the system checks whether

T2 has modified the same data.
– If T2 has made changes, T1 is rolled back.

Otherwise, T1 commits successfully.

Deadlock

• Deadlock is a situation that occurs in a Database
Management System (DBMS) (or any multi-process
system) when two or more transactions are unable to
proceed because each is waiting for the other to release
a resource or a lock.

• In a deadlock, the involved transactions are blocked
forever and cannot make progress.

• This results in a stale state, where no transaction can
complete unless some action is taken to resolve the
deadlock.

Deadlock

Deadlock : Features

• For a deadlock to occur, the following four conditions, known as the
Coffman conditions, must hold true:
– Mutual Exclusion: A resource (such as a data item) can only be used

by one transaction at a time. If a transaction holds a lock on a
resource, others cannot access it.

– Hold and Wait: A transaction holding at least one resource is
waiting to acquire additional resources that are currently being
held by other transactions.

– No Preemption: Resources cannot be forcibly taken from
transactions holding them. A resource can only be released
voluntarily by the transaction holding it.

– Circular Wait: A set of transactions {T1, T2, ..., Tn} exists, where
each transaction is waiting for a resource held by the next
transaction in the set, forming a cycle.

Deadlock : Example

• Consider the following example of a deadlock scenario
involving two transactions:
– Transaction T1 locks resource A and wants resource B.
– Transaction T2 locks resource B and wants resource A.
– Transaction T1 is waiting for Transaction T2 to release

resource B.
– Transaction T2 is waiting for Transaction T1 to release

resource A.

• Since neither transaction can proceed without the other
releasing a resource, they are in a deadlock state. Both
transactions are blocked indefinitely.

Deadlock Prevention

• Eliminate Circular Wait: Prevent transactions from
holding one resource while waiting for others. One way is
to ensure that transactions request all the resources
they need at once, or none at all (atomic requests).

• Preemption: If a transaction is holding a resource and
waiting for others, the DBMS may preempt (forcefully
take away) the resource and assign it to another
transaction. This resolves the Hold and Wait condition.

• Ordering of Resources: Transactions request resources in
a predefined order (e.g., always acquire resource A
before resource B). This ensures that circular wait is
avoided.

Deadlock Detection

• The system uses a wait-for graph or resource allocation
graph to monitor the resources and transactions.

• The wait-for graph is a directed graph where:
– Nodes represent transactions.
– Edges represent a transaction waiting for a resource

held by another transaction.

• If a cycle is detected in this graph, a deadlock exists.
Once a deadlock is detected, one of the transactions
involved in the cycle is chosen to be rolled back
(aborted), releasing the resources and allowing the
remaining transactions to proceed.

Deadlock Detection

Deadlock Recovery

• Transaction Rollback: The simplest way to resolve a
deadlock is to abort one of the transactions involved in the
deadlock cycle. Once the transaction is rolled back, it
releases its locks, and the other transactions can continue.

• Resource Preemption: In some cases, the system may
preempt resources from one transaction (even if it hasn't
completed) and assign them to other transactions. The
preempted transaction can then be rolled back or
restarted.

• Transaction Restart: After rolling back a transaction, it can
be restarted. However, this may incur additional overhead
if the transaction has already performed significant work.

Deadlock in MySQL

• Deadlock Detection: InnoDB detects deadlocks using a
timeout mechanism. If a transaction is waiting for a
resource that is locked by another transaction, and that
other transaction is also waiting for a resource that the
first transaction holds, InnoDB detects a cycle (deadlock)
and chooses one transaction to roll back.

• Deadlock Handling: When a deadlock is detected, InnoDB
automatically chooses one of the transactions to rollback
and returns a deadlock error (error code 1213).

• Example of a deadlock error in MySQL:
– ERROR 1213 (40001): Deadlock found when trying to

get lock; try restarting transaction

Deadlock in MySQL

• Consider the following two transactions in MySQL:

• Transaction 1 (T1):
– START TRANSACTION;

– UPDATE accounts SET balance = balance - 500 WHERE
account_id = 1; -- Transaction 1 locks account_id = 1

– UPDATE accounts SET balance = balance + 500 WHERE
account_id = 2; -- Transaction 1 is waiting for account_id =
2

Deadlock in MySQL

• Transaction 2 (T2):
– START TRANSACTION;

– UPDATE accounts SET balance = balance + 500 WHERE
account_id = 2; -- Transaction 2 locks account_id = 2

– UPDATE accounts SET balance = balance - 500 WHERE
account_id = 1; -- Transaction 2 is waiting for account_id =
1

Deadlock in MySQL

• If both transactions are executing concurrently, a
deadlock will occur:
– Transaction 1 has locked account_id = 1 and is

waiting for account_id = 2.
– Transaction 2 has locked account_id = 2 and is

waiting for account_id = 1.

• MySQL’s InnoDB engine will detect this deadlock and
roll back one of the transactions to resolve the issue.

Recovery

• Database recovery refers to the process of restoring a
database to a correct state after a failure.

• In a database management system (DBMS), failures can
occur for various reasons, including hardware failure,
software crash, power failure, human error, or even
corruption of the database.

• The primary goal of recovery is to ensure ACID properties
(Atomicity, Consistency, Isolation, and Durability) are
maintained even after a failure.

• Recovery mechanisms ensure that the database remains
consistent and no data is lost, while also preventing the
system from entering an inconsistent state.

Types of failures

• Transaction Failures:
– When a transaction cannot be completed due to an error

(e.g., an application crash or logic error).

• System Failures:
– When the DBMS or operating system crashes, possibly

resulting in lost data or incomplete transactions.

• Disk Failures:
– When a disk or storage medium where the database is

stored fails.

• Human Errors:
– Accidental data deletion, modification, or other mistakes

made by users.

Recovery Techniques

• Log-based Recovery

• Shadow Paging

• Checkpointing

• Backup and Restore

Log-Based Recovery

• Log-based recovery is the most widely used method in
modern DBMS for transaction management.

• In this technique, the DBMS keeps a log of all changes
made to the database, including transaction start, commit,
and rollback operations.

• The log contains records of every transaction in the
database, and it is stored in a sequential manner.
– Write-Ahead Logging (WAL): In WAL, the log is written

to a stable storage before any changes are applied to
the actual database. This ensures that if a crash occurs,
the DBMS can refer to the log to undo any incomplete
transactions and redo any committed transactions.

Log-Based Recovery

• Example:
– When a transaction updates a record, an entry is

made in the log file that includes the transaction
ID, the record updated, and the new value.

– If a failure occurs, the DBMS uses the log to
either undo (rollback) uncommitted changes or
redo (reapply) changes of committed
transactions.

Log-Based Recovery

• Steps:
– Before writing to disk: The transaction logs are

written.
– Transaction commit: The log is updated with a

commit record.
– Failure recovery: The system uses the log to undo or

redo transactions based on whether they were
completed or not.

Shadow Paging

• Shadow paging involves maintaining a copy of the database
called a shadow page.

• When a transaction makes a change to the database, it modifies
the current page. If a crash occurs, the shadow page remains
intact and the database can be restored to the previous
consistent state.
– Shadow Pages: In shadow paging, the DBMS maintains two

sets of pages: the current page and the shadow page.
– Atomic Updates: Changes are first made to the new page, and

once the transaction commits, the current page is switched
with the shadow page.

– Rollback: If a failure occurs, the shadow page (unchanged) is
used to restore the database to its previous state.

Shadow Paging

Shadow Paging

• Steps:
– A shadow copy of the database is created.
– When a transaction updates data, changes are made

to the current page.
– When the transaction commits, the current page

replaces the shadow page.
– If a failure happens before the transaction commits,

the system rolls back to the shadow page.

Checkpointing

• Checkpointing is a technique used to minimize the
amount of work required during recovery. It involves
saving the current state of the database periodically by
creating checkpoint records in the log.
– Checkpoint Record:
• A checkpoint is a point in time where the DBMS

writes all the changes from memory to disk.
• After a checkpoint is created, only transactions

that start after that checkpoint need to be
considered for recovery in the event of a failure.

Checkpointing

Checkpointing

• Steps:
– Periodically, the DBMS writes a checkpoint record to

the log, marking a known point in the database.
– After the checkpoint is written, the DBMS flushes all

changes in memory (buffer pool) to disk.
– If a failure occurs after the checkpoint, the system

needs to only look at the log entries after the
checkpoint and perform a recovery of those
transactions.

Backup and Restore

• It involves creating periodic backups of the entire
database and restoring it when needed.

• In the event of a failure, the system can be restored to
the point of the last backup.
– Full Backup: A snapshot of the entire database is

taken and stored on a separate medium.
– Incremental Backup: Only changes since the last

backup are stored.
– Point-in-time Recovery: You can restore the

database to a specific point in time using backup
and transaction logs.

Backup and Restore

• Steps:
– Perform regular backups of the database (daily,

weekly, etc.).
– Store backups securely (off-site or in cloud storage).
– In case of failure, restore the most recent backup.
– Use transaction logs or incremental backups to

restore the database to its last consistent state.

Backup and Restore

Recovery in Log-based Systems

• Undo Recovery:
– Used for aborted transactions. The system

undoes changes made by a transaction that has
not committed.

– This ensures that the transaction’s partial
updates are discarded, leaving the database in a
consistent state.

• Example: If a transaction updates a table but fails
before committing, the system will roll back any
changes made by that transaction.

Recovery in Log-based Systems

• Redo Recovery:
– Used for committed transactions. This ensures

that any changes made by committed
transactions are preserved even if a crash occurs
before they were written to the database.

• Example: If a transaction successfully commits but
the change has not been written to disk when a
crash occurs, the system will redo the transaction
using the log file.

Recovery in Log-based Systems

• No-Action Recovery:
– No action is taken if a failure occurs, as the

system assumes the transaction will complete
successfully and commit after it restarts.

– However, this method is not commonly used as it
doesn't guarantee ACID compliance.

Conclusion

• Transaction management is essential for maintaining
data integrity and consistency in DBMS.

• ACID properties (Atomicity, Consistency, Isolation,
Durability) ensure reliable transactions.

• Concurrency control techniques help in handling
simultaneous transaction requests.

• Recovery methods like logging, checkpointing, and
backup ensure system reliability during failures.

• A well-designed transaction system enhances database
performance and ensures fault tolerance.

tushar@tusharkute.com

 Thank you

This presentation is created using LibreOffice Impress 7.4.1.2, can be used freely as per GNU General Public License

Web Resources
https://mitu.co.in

http://tusharkute.com

@mITuSkillologies @mitu_group

contact@mitu.co.in

@mitu-skillologies @MITUSkillologies

@mituskillologies@mituskillologies

mailto:tushar@tusharkute.com
https://mitu.co.in/
http://tusharkute.com/
mailto:contact@mitu.co.in
https://instagram.com/mitu_skillologies
https://fb.com/MITUSkillologies
https://twitter.com/mitu_group
https://www.linkedin.com/company/mitu-skillologies/
https://youtube.com/MITUSkillologies
https://github.com/mituskillologies/
https://www.kaggle.com/mituskillologies

	Formal Template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130

