Software Requirements:
Operating System: Ubuntu 16.04 LTS.
Python 2.7, PyCharm and Anaconda.

Hardware Requirements:
Processor: Pentium Dual Core +
RAM: Min 2GB and Internet Connection

Prerequisites: Basic coding knowledge in Python is mandatory.

Module 1

Python Programming:
–  Installation and History
–  Language basics
–  Basic Syntax, Operators,
–  Decision Making statements
–  Loops control statements
–  Strings, Lists
–  Tuples, Dictionary
–  Creating and using Functions
–  Creating Modules and Packages
–  Files I/O
–  Command line arguments
–  Exception Handling

Module 2

Installing Python and Anaconda
Data Preprocessing
–  Get the dataset
–  Importing the Libraries
–  Importing the Dataset
–  Object-oriented programming: classes & objects
–  Missing Data
–  Categorical Data
–  Splitting the Dataset into the Training set and Test set
–  Feature Scaling

Module 3

Regression
–  What is Regression
–  Simple Linear Regression
–  Multiple Linear Regression
–  Polynomial Regression
–  Theoritical introduction
–  Accepting and using datasets
–  Practical example
–  Application approach

Module 4

Logistic Regression
–  Theoritical introduction
–  Accepting and using datasets
–  Practical example
–  Application approach
Decision Tree
–  Theoritical introduction
–  Accepting and using datasets
–  Practical example
–  Application approach
Support Vector Regression
–  Theoritical introduction
–  Accepting and using datasets
–  Practical example
–  Application approach

Module 5

Random Forest Algorithm
–  Theoretical introduction
–  Accepting and using datasets
–  Practical example
–  Application approach
Classification
–  Theoretical introduction
–  Accepting and using datasets
–  Practical example
–  Application approach
K- Nearest Neighbor
–  Theoretical introduction
–  Accepting and using datasets
–  Practical example
–  Application approach
Support Vector Machine
–  Theoretical introduction
–  Accepting and using datasets
–  Practical example
–  Application approach

Module 6

Naive Bayes
–  Theoretical introduction
–  Accepting and using datasets
–  Practical example
–  Application approach
K-means Clustering
–  Theoretical introduction
–  Accepting and using datasets
–  Practical example
–  Application approach
Associative Rule Mining
–  Apriori-Algorithm [Market Basket Analysis]
–  Theoretical introduction
–  Accepting and using datasets
–  Practical example
–  Application approach

Case Studies and Practical Based Projects